Spaces:
Runtime error
Runtime error
| from bokeh.models import ColumnDataSource, FactorRange, HoverTool | |
| from bokeh.plotting import figure | |
| from bokeh.transform import dodge | |
| from bokeh.io import output_notebook, show | |
| from bokeh.palettes import Category20 | |
| from bokeh.plotting import figure, output_notebook, show | |
| from bokeh.plotting import figure, show | |
| from bokeh.io import output_file, show | |
| from bokeh.models import ColumnDataSource, FactorRange, Range1d, LinearAxis | |
| from bokeh.transform import factor_cmap | |
| output_notebook() | |
| from huggingface_hub import HfApi | |
| from huggingface_hub import ModelSearchArguments, DatasetSearchArguments | |
| from huggingface_hub import ModelFilter | |
| import pandas as pd | |
| import gradio as gr | |
| api = HfApi() | |
| filt = ModelFilter(library = "diffusers",) | |
| diffusers_models = api.list_models(filter=filt, sort='downloads', direction=-1) | |
| #len(diffusers_models) | |
| diffusers_dict = {} | |
| downloads, authors, modelids, likes = [], [], [], [] | |
| print(len(diffusers_models)) | |
| for data in diffusers_models: | |
| #print(data.downloads, data.author, data.modelId, data.likes) | |
| downloads.append(data.downloads) | |
| authors.append(data.author) | |
| modelids.append(data.modelId) | |
| likes.append(data.likes) | |
| diffusers_dict['modelid'] = modelids | |
| diffusers_dict['author'] = authors | |
| diffusers_dict['download'] = downloads | |
| diffusers_dict['likes'] = likes | |
| diffusers_df = pd.DataFrame.from_dict(diffusers_dict) | |
| diffusers_df = diffusers_df[(diffusers_df['download'] != 0) & (diffusers_df['likes'] != 0) ] | |
| grouped = diffusers_df.groupby('author').sum().sort_values(by='download', ascending=False) | |
| #getting data ready for bokeh plots | |
| data_bokeh = grouped.sort_values('download', ascending=False).head(15) | |
| data_bokeh.reset_index(inplace=True) | |
| data_bokeh | |
| #y - axis 1 | |
| authors = data_bokeh['author'] | |
| #x-axis | |
| downloads = data_bokeh['download'] | |
| #y - axis 2 | |
| likes = data_bokeh['likes'] | |
| # create sample data | |
| data = {'authors': authors, | |
| 'downloads': downloads, | |
| 'likes': likes} | |
| def display_df(): | |
| df = data_bokeh | |
| return df | |
| def bokehplots(): | |
| source = ColumnDataSource(data=data) | |
| # set up figure | |
| p = figure(x_range=FactorRange(*authors), height=350, width=600, title='Downloads and Likes by Author') | |
| p.vbar(x=dodge('authors',-0.2, range=p.x_range), top='downloads', width=0.4, source=source, | |
| color=Category20[3][0], legend_label='Downloads') | |
| p.vbar(x=dodge('authors',0.2, range=p.x_range), top='likes', width=0.4, source=source, | |
| color=Category20[3][1], legend_label='Likes') | |
| p.xaxis.major_label_orientation = 45 | |
| # set up y-axis for downloads | |
| p.yaxis.axis_label = 'Downloads' | |
| p.yaxis.axis_label_text_color = Category20[3][0] | |
| p.yaxis.major_label_text_color = Category20[3][0] | |
| # set up y-axis for likes | |
| p.extra_y_ranges = {'likes': Range1d(start=0, end=max(likes)+500)} | |
| p.add_layout(LinearAxis(y_range_name='likes', axis_label='Likes', | |
| axis_label_text_color=Category20[3][1], major_label_text_color=Category20[3][1]), 'right') | |
| p.vbar(x=dodge('authors', 0.4, range=p.x_range), top='likes', width=0.5, source=source, | |
| color=Category20[3][1], legend_label='Likes', y_range_name='likes') | |
| # Create a HoverTool object and specify the information to display in the tooltip | |
| #hover = HoverTool(tooltips=[('authors', '@authors'), ('downloads', '@downloads'), ('likes', '@likes')]) | |
| # Add the HoverTool to the plot | |
| #p.add_tools(hover) | |
| # remove grid lines | |
| p.xgrid.grid_line_color = None | |
| p.ygrid.grid_line_color = None | |
| # set legend location | |
| p.legend.location = 'top_right' | |
| return p | |
| with gr.Blocks(css = '#myplot {height: 600px;}') as demo: | |
| with gr.Row(): | |
| plot = gr.Plot(elem_id='myplot') | |
| out_dataframe = gr.Dataframe(wrap=True, max_rows=10, overflow_row_behaviour= "paginate", datatype = ["str", "number", "number"], interactive=False) | |
| demo.load(bokehplots, outputs=[plot]) | |
| demo.load(fn=display_df, outputs=[out_dataframe]) | |
| demo.launch(debug=True) |