Spaces:
Runtime error
Runtime error
create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from bokeh.models import ColumnDataSource, FactorRange, HoverTool
|
| 2 |
+
from bokeh.plotting import figure
|
| 3 |
+
from bokeh.transform import dodge
|
| 4 |
+
from bokeh.io import output_notebook, show
|
| 5 |
+
from bokeh.palettes import Category20
|
| 6 |
+
|
| 7 |
+
from huggingface_hub import HfApi
|
| 8 |
+
from huggingface_hub import ModelSearchArguments, DatasetSearchArguments
|
| 9 |
+
from huggingface_hub import ModelFilter
|
| 10 |
+
|
| 11 |
+
import pandas as pd
|
| 12 |
+
|
| 13 |
+
api = HfApi()
|
| 14 |
+
filt = ModelFilter(library = "diffusers",)
|
| 15 |
+
diffusers_models = api.list_models(filter=filt, sort='downloads', direction=-1)
|
| 16 |
+
#len(diffusers_models)
|
| 17 |
+
|
| 18 |
+
diffusers_dict = {}
|
| 19 |
+
downloads, authors, modelids, likes = [], [], [], []
|
| 20 |
+
print(len(diffusers_models))
|
| 21 |
+
for data in diffusers_models:
|
| 22 |
+
#print(data.downloads, data.author, data.modelId, data.likes)
|
| 23 |
+
downloads.append(data.downloads)
|
| 24 |
+
authors.append(data.author)
|
| 25 |
+
modelids.append(data.modelId)
|
| 26 |
+
likes.append(data.likes)
|
| 27 |
+
|
| 28 |
+
diffusers_dict['modelid'] = modelids
|
| 29 |
+
diffusers_dict['author'] = authors
|
| 30 |
+
diffusers_dict['download'] = downloads
|
| 31 |
+
diffusers_dict['likes'] = likes
|
| 32 |
+
|
| 33 |
+
diffusers_df = pd.DataFrame.from_dict(diffusers_dict)
|
| 34 |
+
diffusers_df = diffusers_df[(diffusers_df['download'] != 0) & (diffusers_df['likes'] != 0) ]
|
| 35 |
+
grouped = diffusers_df.groupby('author').sum().sort_values(by='download', ascending=False)
|
| 36 |
+
|
| 37 |
+
#getting data ready for bokeh plots
|
| 38 |
+
data_bokeh = grouped.sort_values('download', ascending=False).head(15)
|
| 39 |
+
data_bokeh.reset_index(inplace=True)
|
| 40 |
+
data_bokeh
|
| 41 |
+
|
| 42 |
+
#y - axis 1
|
| 43 |
+
authors = data_bokeh['author']
|
| 44 |
+
|
| 45 |
+
#x-axis
|
| 46 |
+
downloads = data_bokeh['download']
|
| 47 |
+
|
| 48 |
+
#y - axis 2
|
| 49 |
+
likes = data_bokeh['likes']
|
| 50 |
+
|
| 51 |
+
# create sample data
|
| 52 |
+
data = {'authors': authors,
|
| 53 |
+
'downloads': downloads,
|
| 54 |
+
'likes': likes}
|
| 55 |
+
|
| 56 |
+
source = ColumnDataSource(data=data)
|
| 57 |
+
|
| 58 |
+
def display_df():
|
| 59 |
+
df = grouped
|
| 60 |
+
return df
|
| 61 |
+
|
| 62 |
+
def bokehplots():
|
| 63 |
+
# set up figure
|
| 64 |
+
p = figure(x_range=FactorRange(*authors), plot_height=350, plot_width=600, title='Downloads and Likes by Author')
|
| 65 |
+
p.vbar(x=dodge('authors',-0.2, range=p.x_range), top='downloads', width=0.4, source=source,
|
| 66 |
+
color=Category20[3][0], legend_label='Downloads')
|
| 67 |
+
p.vbar(x=dodge('authors',0.2, range=p.x_range), top='likes', width=0.4, source=source,
|
| 68 |
+
color=Category20[3][1], legend_label='Likes')
|
| 69 |
+
p.xaxis.major_label_orientation = 45
|
| 70 |
+
|
| 71 |
+
# set up y-axis for downloads
|
| 72 |
+
p.yaxis.axis_label = 'Downloads'
|
| 73 |
+
p.yaxis.axis_label_text_color = Category20[3][0]
|
| 74 |
+
p.yaxis.major_label_text_color = Category20[3][0]
|
| 75 |
+
|
| 76 |
+
# set up y-axis for likes
|
| 77 |
+
p.extra_y_ranges = {'likes': Range1d(start=0, end=max(likes)+500)}
|
| 78 |
+
p.add_layout(LinearAxis(y_range_name='likes', axis_label='Likes',
|
| 79 |
+
axis_label_text_color=Category20[3][1], major_label_text_color=Category20[3][1]), 'right')
|
| 80 |
+
p.vbar(x=dodge('authors', 0.4, range=p.x_range), top='likes', width=0.5, source=source,
|
| 81 |
+
color=Category20[3][1], legend_label='Likes', y_range_name='likes')
|
| 82 |
+
|
| 83 |
+
# Create a HoverTool object and specify the information to display in the tooltip
|
| 84 |
+
hover = HoverTool(tooltips=[('authors', '@authors'), ('downloads', '@downloads'), ('likes', '@likes')])
|
| 85 |
+
# Add the HoverTool to the plot
|
| 86 |
+
p.add_tools(hover)
|
| 87 |
+
|
| 88 |
+
# remove grid lines
|
| 89 |
+
p.xgrid.grid_line_color = None
|
| 90 |
+
p.ygrid.grid_line_color = None
|
| 91 |
+
|
| 92 |
+
# set legend location
|
| 93 |
+
p.legend.location = 'top_right'
|
| 94 |
+
|
| 95 |
+
return p
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
with gr.Blocks() as demo:
|
| 99 |
+
plot = gr.Plot()
|
| 100 |
+
out_dataframe = gr.Dataframe(wrap=True, max_rows=10, overflow_row_behaviour= "paginate", datatype = ["str", "number", "number"], interactive=False)
|
| 101 |
+
demo.load(bokehplots, inputs=[], outputs=[plot])
|
| 102 |
+
demo.load(fn=display_df, outputs=out_dataframe)
|
| 103 |
+
|
| 104 |
+
demo.launch(debug=True)
|