Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ GPT Neo model configuration""" | |
| import os | |
| from typing import Tuple, Union | |
| from transformers import AutoConfig | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "EleutherAI/gpt-neo-125M": "https://huggingface.co/EleutherAI/gpt-neo-125M/resolve/main/config.json", | |
| "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", | |
| # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo | |
| } | |
| class VGPTNeoConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`GPTNeoModel`]. It is used to instantiate a GPT | |
| Neo model according to the specified arguments, defining the model architecture. Instantiating a configuration with | |
| the defaults will yield a similar configuration to that of the GPTNeo | |
| [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| TODO: this doc is completely out of sync with the actual args | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 50257): | |
| Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different | |
| tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`]. | |
| additional_vocab_size (`int`, *optional`, defaults to 0): | |
| Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens | |
| are always trainable whereas regular vocab tokens can be frozen or not. | |
| attention_types (`List`, *optional*, defaults to `[[["global", "local"], 12]]`): | |
| The type of attention for each layer in a `List` of the following format `[[["attention_type"], | |
| num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the | |
| value of `attention_type` from `["global", "local"]` | |
| hidden_size (`int`, *optional*, defaults to 2048): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| num_layers (`int`, *optional*, defaults to 24): | |
| Number of hidden layers in the Transformer encoder. | |
| num_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| intermediate_size (`int`, *optional*, defaults to 8192): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"selu"` and `"gelu_new"` are supported. | |
| embed_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| max_position_embeddings (`int`, *optional*, defaults to 2048): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| type_vocab_size (`int`, *optional*, defaults to 2): | |
| The vocabulary size of the `token_type_ids` passed when calling [`GPTNeoModel`]. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| alpha_initializer (`str`, *optional*, defaults to `"ones"`): | |
| Initialization type for the alphas. | |
| alphas_initializer_range (`float`, *optional*, defaults to 0.0): | |
| The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. | |
| alpha_type (`str`, *optional*, defaults to `"vector"`): | |
| Whether the gating alphas should be vectors or single floats. | |
| layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): | |
| The epsilon used by the layer normalization layers. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). Only | |
| relevant if `config.is_decoder=True`. | |
| cross_layer_interval (`int`, *optional*, default to 1) | |
| Interval for cross attention (from text to image) layers. | |
| Example: | |
| ```python | |
| >>> from transformers import GPTNeoConfig, GPTNeoModel | |
| >>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration | |
| >>> configuration = GPTNeoConfig() | |
| >>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration | |
| >>> model = GPTNeoModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "vgpt_neo" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| attribute_map = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} | |
| def __init__( | |
| self, | |
| vocab_size=50257, | |
| additional_vocab_size=0, | |
| max_position_embeddings=2048, | |
| hidden_size=2048, | |
| num_layers=24, | |
| attention_types=[[["global", "local"], 12]], | |
| num_heads=16, | |
| intermediate_size=None, | |
| window_size=256, | |
| activation_function="gelu_new", | |
| resid_dropout=0.0, | |
| embed_dropout=0.0, | |
| attention_dropout=0.0, | |
| layer_norm_epsilon=1e-5, | |
| initializer_range=0.02, | |
| alpha_initializer="ones", | |
| alphas_initializer_range=0.0, | |
| alpha_type="vector", | |
| summary_type="cls_index", | |
| summary_use_proj=True, | |
| summary_activation=None, | |
| summary_proj_to_labels=True, | |
| summary_first_dropout=0.1, | |
| use_cache=True, | |
| bos_token_id=50256, | |
| eos_token_id=50256, | |
| cross_layer_interval=1, | |
| tie_word_embeddings=False, | |
| freeze_text_layers=True, | |
| freeze_lm_head=False, | |
| freeze_vision_layers=True, | |
| vision_model_name="google/vit-base-patch16-224", | |
| vision_model_params="{}", | |
| vision_embed_dim=768, | |
| vision_image_size=224, | |
| image_token_index=50257, | |
| use_resampler=False, | |
| resampler_n_latents=64, | |
| resampler_depth=6, | |
| resampler_n_heads=16, | |
| resampler_head_dim=96, | |
| **kwargs, | |
| ): | |
| self.vocab_size = vocab_size | |
| self.additional_vocab_size = additional_vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.hidden_size = hidden_size | |
| self.num_layers = num_layers | |
| self.num_heads = num_heads | |
| self.intermediate_size = intermediate_size | |
| self.window_size = window_size | |
| self.activation_function = activation_function | |
| self.resid_dropout = resid_dropout | |
| self.embed_dropout = embed_dropout | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_epsilon = layer_norm_epsilon | |
| self.initializer_range = initializer_range | |
| self.alpha_initializer = alpha_initializer | |
| self.alphas_initializer_range = alphas_initializer_range | |
| self.alpha_type = alpha_type | |
| self.summary_type = summary_type | |
| self.summary_use_proj = summary_use_proj | |
| self.summary_activation = summary_activation | |
| self.summary_first_dropout = summary_first_dropout | |
| self.summary_proj_to_labels = summary_proj_to_labels | |
| self.use_cache = use_cache | |
| self.bos_token_id = bos_token_id | |
| self.eos_token_id = eos_token_id | |
| self.cross_layer_interval = cross_layer_interval | |
| self.freeze_vision_layers = freeze_vision_layers | |
| self.vision_model_name = vision_model_name | |
| self.vision_model_params = vision_model_params | |
| self.tie_word_embeddings = tie_word_embeddings | |
| self.freeze_text_layers = freeze_text_layers | |
| self.freeze_lm_head = freeze_lm_head | |
| self.image_token_index = image_token_index | |
| self.attention_types = attention_types | |
| self.attention_layers = self.expand_attention_types_params(attention_types) | |
| self.vision_embed_dim = vision_embed_dim | |
| self.vision_image_size = vision_image_size | |
| # Resampler params | |
| self.use_resampler = use_resampler | |
| self.resampler_n_latents = resampler_n_latents | |
| self.resampler_depth = resampler_depth | |
| self.resampler_n_heads = resampler_n_heads | |
| self.resampler_head_dim = resampler_head_dim | |
| # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since | |
| # PretrainedConfig.from_dict first instantiates the class with the config dict and only then | |
| # updates the config object with `kwargs` from from_pretrained, so during the instantiation | |
| # of this object many attributes have default values and haven't yet been overridden. | |
| # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. | |
| super().__init__( | |
| bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs | |
| ) | |
| def check_compatibilities(self): | |
| if self.tie_word_embeddings and (self.freeze_text_layers != self.freeze_lm_head): | |
| raise ValueError( | |
| "if `tie_word_embeddings` is True, then `freeze_lm_head` and `freeze_text_layers` must be equal." | |
| ) | |
| vision_model_params = eval(self.vision_model_params) | |
| config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params) | |
| if hasattr(config, "vision_config"): | |
| vision_config = config.vision_config | |
| else: | |
| vision_config = config | |
| vision_embed_dim = vision_config.hidden_size | |
| if self.vision_embed_dim != vision_embed_dim: | |
| raise ValueError( | |
| f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model" | |
| f" ({vision_embed_dim})" | |
| ) | |
| vision_image_size = vision_config.image_size | |
| if self.vision_image_size != vision_image_size: | |
| raise ValueError( | |
| f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model" | |
| f" ({vision_image_size})" | |
| ) | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| outputs = super(VGPTNeoConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs) | |
| if isinstance(outputs, Tuple): | |
| # When called with return_unused_kwargs=True, the first item will be the config | |
| outputs[0].check_compatibilities() | |
| else: | |
| outputs.check_compatibilities() | |
| return outputs | |
| def expand_attention_types_params(attention_types): | |
| attentions = [] | |
| for item in attention_types: | |
| for _ in range(item[1]): | |
| attentions.extend(item[0]) | |
| return attentions | |