Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ OPT model configuration""" | |
| import os | |
| from typing import Tuple, Union | |
| from transformers import AutoConfig | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| OPT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "facebook/opt-125m": "https://huggingface.co/facebook/opt-125m/blob/main/config.json", | |
| "facebook/opt-350m": "https://huggingface.co/facebook/opt-350m/blob/main/config.json", | |
| "facebook/opt-1.3b": "https://huggingface.co/facebook/opt-1.3b/blob/main/config.json", | |
| "facebook/opt-2.7b": "https://huggingface.co/facebook/opt-2.7b/blob/main/config.json", | |
| "facebook/opt-6.7b": "https://huggingface.co/facebook/opt-6.7b/blob/main/config.json", | |
| "facebook/opt-13b": "https://huggingface.co/facebook/opt-13b/blob/main/config.json", | |
| } | |
| class VOPTConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model | |
| according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
| defaults will yield a similar configuration to that of the OPT | |
| [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| TODO: this doc is completely out of sync with the actual args | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 50272): | |
| Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`OPTModel`] | |
| additional_vocab_size (`int`, *optional`, defaults to 0): | |
| Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens | |
| are always trainable whereas regular vocab tokens can be frozen or not. | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the layers and the pooler layer. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of decoder layers. | |
| ffn_dim (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer decoder. | |
| activation_function (`str` or `function`, *optional*, defaults to `"relu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"silu"` and `"gelu_new"` are supported. | |
| max_position_embeddings (`int`, *optional*, defaults to 2048): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| do_layer_norm_before (`bool`, *optional*, defaults to `True`): | |
| Whether to perform layer normalization before the attention block. | |
| word_embed_proj_dim (`int`, *optional*): | |
| `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to | |
| `hidden_size`. | |
| dropout (`float`, *optional*, defaults to 0.1): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| layerdrop: (`float`, *optional*, defaults to 0.0): | |
| The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more | |
| details. | |
| init_std (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| alpha_initializer (`str`, *optional*, defaults to `"ones"`): | |
| Initialization type for the alphas. | |
| alphas_initializer_range (`float`, *optional*, defaults to 0.0): | |
| The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. | |
| alpha_type (`str`, *optional*, defaults to `"vector"`): | |
| Whether the gating alphas should be vectors or single floats. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). | |
| cross_layer_interval (`int`, *optional*, default to 1) | |
| Interval for cross attention (from text to image) layers. | |
| Example: | |
| ```python | |
| >>> from transformers import OPTModel, OPTConfig | |
| >>> # Initializing a OPT facebook/opt-large style configuration | |
| >>> configuration = OPTConfig() | |
| >>> # Initializing a model from the facebook/opt-large style configuration | |
| >>> model = OPTModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "vopt" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| def __init__( | |
| self, | |
| vocab_size=50272, | |
| additional_vocab_size=0, | |
| hidden_size=768, | |
| num_hidden_layers=12, | |
| ffn_dim=3072, | |
| max_position_embeddings=2048, | |
| do_layer_norm_before=True, | |
| _remove_final_layer_norm=False, | |
| word_embed_proj_dim=None, | |
| dropout=0.1, | |
| attention_dropout=0.0, | |
| num_attention_heads=12, | |
| activation_function="relu", | |
| layerdrop=0.0, | |
| init_std=0.02, | |
| alpha_initializer="ones", | |
| alphas_initializer_range=0.0, | |
| alpha_type="vector", | |
| use_cache=True, | |
| pad_token_id=1, | |
| bos_token_id=2, | |
| eos_token_id=2, | |
| cross_layer_interval=1, | |
| cross_layer_activation_function="swiglu", | |
| normformer_layer_norms=False, | |
| qk_layer_norms=False, | |
| rms_norm=False, | |
| qk_layer_norms_perceiver=False, | |
| tie_word_embeddings=False, | |
| freeze_text_layers=True, | |
| freeze_text_module_exceptions=[], | |
| freeze_lm_head=False, | |
| freeze_vision_layers=True, | |
| freeze_vision_module_exceptions=[], | |
| vision_model_name="google/vit-base-patch16-224", | |
| vision_model_params="{}", | |
| vision_embed_dim=768, | |
| vision_image_size=224, | |
| image_token_index=50257, # TODO: change this to right value | |
| use_resampler=False, | |
| resampler_n_latents=64, | |
| resampler_depth=6, | |
| resampler_n_heads=16, | |
| resampler_head_dim=96, | |
| **kwargs, | |
| ): | |
| super().__init__( | |
| pad_token_id=pad_token_id, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| tie_word_embeddings=tie_word_embeddings, | |
| **kwargs, | |
| ) | |
| self.vocab_size = vocab_size | |
| self.additional_vocab_size = additional_vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.num_attention_heads = num_attention_heads | |
| self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size | |
| self.ffn_dim = ffn_dim | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.activation_function = activation_function | |
| self.init_std = init_std | |
| self.alpha_initializer = alpha_initializer | |
| self.alphas_initializer_range = alphas_initializer_range | |
| self.alpha_type = alpha_type | |
| self.layerdrop = layerdrop | |
| self.use_cache = use_cache | |
| self.do_layer_norm_before = do_layer_norm_before | |
| # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility | |
| # with checkpoints that have been fine-tuned before transformers v4.20.1 | |
| # see https://github.com/facebookresearch/metaseq/pull/164 | |
| self._remove_final_layer_norm = _remove_final_layer_norm | |
| self.cross_layer_interval = cross_layer_interval | |
| self.cross_layer_activation_function = cross_layer_activation_function | |
| self.normformer_layer_norms = normformer_layer_norms | |
| self.qk_layer_norms = qk_layer_norms | |
| self.rms_norm = rms_norm | |
| self.qk_layer_norms_perceiver = qk_layer_norms_perceiver | |
| self.freeze_vision_layers = freeze_vision_layers | |
| self.vision_model_name = vision_model_name | |
| self.vision_model_params = vision_model_params | |
| self.tie_word_embeddings = tie_word_embeddings | |
| self.freeze_text_layers = freeze_text_layers | |
| self.freeze_text_module_exceptions = freeze_text_module_exceptions | |
| self.freeze_vision_module_exceptions = freeze_vision_module_exceptions | |
| self.freeze_lm_head = freeze_lm_head | |
| self.image_token_index = image_token_index | |
| self.vision_embed_dim = vision_embed_dim | |
| self.vision_image_size = vision_image_size | |
| # Resampler params | |
| self.use_resampler = use_resampler | |
| self.resampler_n_latents = resampler_n_latents | |
| self.resampler_depth = resampler_depth | |
| self.resampler_n_heads = resampler_n_heads | |
| self.resampler_head_dim = resampler_head_dim | |
| # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since | |
| # PretrainedConfig.from_dict first instantiates the class with the config dict and only then | |
| # updates the config object with `kwargs` from from_pretrained, so during the instantiation | |
| # of this object many attributes have default values and haven't yet been overridden. | |
| # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. | |
| def check_compatibilities(self): | |
| vision_model_params = eval(self.vision_model_params) | |
| config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params) | |
| if hasattr(config, "vision_config"): | |
| vision_config = config.vision_config | |
| else: | |
| vision_config = config | |
| vision_embed_dim = vision_config.hidden_size | |
| if self.vision_embed_dim != vision_embed_dim: | |
| raise ValueError( | |
| f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model" | |
| f" ({vision_embed_dim})" | |
| ) | |
| vision_image_size = vision_config.image_size | |
| if self.vision_image_size != vision_image_size: | |
| raise ValueError( | |
| f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model" | |
| f" ({vision_image_size})" | |
| ) | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| outputs = super(VOPTConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs) | |
| if isinstance(outputs, Tuple): | |
| # When called with return_unused_kwargs=True, the first item will be the config | |
| outputs[0].check_compatibilities() | |
| else: | |
| outputs.check_compatibilities() | |
| return outputs | |