Spaces:
Runtime error
Runtime error
| import math | |
| # Helper function to pretty-print message sizes | |
| def convert_params(params): | |
| if params == 0: | |
| return "0" | |
| size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y") | |
| i = int(math.floor(math.log(params, 1000))) | |
| p = math.pow(1000, i) | |
| s = round(params / p, 2) | |
| return "%s %s" % (s, size_name[i]) | |
| # Parameter Calculation function | |
| def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio): | |
| if tied_embeddings: | |
| embedding_params = hidden_size * vocab_size | |
| else: | |
| embedding_params = 2 * hidden_size * vocab_size | |
| position_embedding_params = hidden_size * sequence_length | |
| attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size) | |
| layernorm_params = 13 * num_layers * hidden_size | |
| if moe: | |
| num_expert_layers = num_layers / expert_interval | |
| ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size | |
| ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size | |
| ffn_params = ffn_expert_params + ffn_dense_params | |
| gating_params = num_expert_layers * hidden_size * num_experts | |
| else: | |
| ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size | |
| total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params | |
| if moe: | |
| total_params += gating_params | |
| return f""" | |
| Embedding parameters: {convert_params(embedding_params)} | |
| Attention parameters: {convert_params(attention_params)} | |
| FFN parameters: {convert_params(ffn_params)} | |
| {'Gating parameters: ' + convert_params(gating_params) if moe else ''} | |
| Total Params in the Model: {convert_params(total_params)} | |
| """ | |