Spaces:
Sleeping
Sleeping
File size: 1,625 Bytes
d122b23 01fde5b d122b23 21daab4 d122b23 01fde5b d122b23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import os
import json
import gradio as gr
import numpy as np
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from huggingface_hub import hf_hub_download
EMBEDDING_NAME = "Qwen/Qwen3-Embedding-0.6B"
def get_vecstore_from_json(embedding_name):
json_path = hf_hub_download(
repo_id="yucxy/cv",
filename="cv_vectors_20250814-1613.json",
repo_type="dataset",
token=os.environ.get("DATASET_TOK")
)
with open(json_path, "r", encoding="utf-8") as f:
data = json.load(f)
embeddings = HuggingFaceEmbeddings(model_name=embedding_name)
vector_store = InMemoryVectorStore(embeddings)
texts = [item["content"] for item in data]
metadatas = [item["metadata"] for item in data]
embeddings_array = [np.array(item["embedding"], dtype=np.float32) for item in data]
vector_store.add_texts(texts=texts, metadatas=metadatas, embeddings=embeddings_array)
return vector_store
VECSTORE = get_vecstore_from_json(EMBEDDING_NAME)
def ask_question(message, history):
results = VECSTORE.similarity_search(message, k=1)
top_0 = results[0].page_content
return top_0
if __name__ == "__main__":
gr.ChatInterface(
fn=ask_question,
type="messages",
chatbot=gr.Chatbot([], type="messages", height=300),
textbox=gr.Textbox(placeholder="Ask me a question about my CV", container=False, scale=7),
title="CV Semantic Search Chatbot Demo",
description="Ask the chatbot a question about my CV",
theme="ocean",
).launch()
|