Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,773 Bytes
1e5cd04 85c065f 1e5cd04 56c5ca2 28fcb9f 56c5ca2 1e5cd04 56c5ca2 1e5cd04 900a6c5 1e5cd04 56c5ca2 1e5cd04 28fcb9f 56c5ca2 1e5cd04 900a6c5 1e5cd04 56c5ca2 1e5cd04 56c5ca2 1e5cd04 28fcb9f 1e5cd04 56c5ca2 1e5cd04 900a6c5 1e5cd04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
MODEL_ID = "internlm/Spatial-SSRL-7B"
MAX_NEW_TOKENS = 2048
# Format prompt toggle content (auto-concatenated to user prompt when enabled)
FORMAT_PROMPT = (
"You FIRST think about the reasoning process as an internal monologue and then provide the final answer. "
"The reasoning process MUST BE enclosed within <think> </think> tags. "
"The final answer MUST BE put in \\boxed{}."
)
# Example questions (base text only; format prompt appended automatically when toggle is on)
EXAMPLE_QUESTIONS = [
"Consider the real-world 3D location of the objects. Which object is further away from the camera? A. boat B. fire hydrant.",
"Consider the real-world 3D orientations of the objects. Are the kid and the teddy bear facing same or similar directions, or very different directions? A. very different directions B. same or similar directions.",
"Consider the real-world 3D locations and orientations of the objects. If I stand at the recreational vehicle's position facing where it is facing, is the dog in front of me or behind me? A. behind B. in front of me."
]
def get_device() -> str:
return "cuda" if torch.cuda.is_available() else "cpu"
def select_dtype(device: str):
if device == "cuda":
if torch.cuda.is_bf16_supported():
return torch.bfloat16
return torch.float16
return torch.float32
def load_model():
device = get_device()
dtype = select_dtype(device)
# Use device_map="auto" for proper GPU allocation with spaces.GPU decorator
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
dtype=dtype,
device_map="auto",
trust_remote_code=True,
)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
return model, processor
MODEL, PROCESSOR = load_model()
@spaces.GPU
@torch.inference_mode()
def answer_question(image: Image.Image, question: str, use_format_prompt: bool):
if image is None:
return "Please upload an image.", 0
if not question or question.strip() == "":
return "Please enter a question.", 0
try:
# If the checkbox input wasn't provided (e.g., from examples with older gradio behavior), default to True
if use_format_prompt is None:
use_format_prompt = True
# Concatenate the format prompt if the toggle is enabled
if use_format_prompt:
question = f"{question}{FORMAT_PROMPT}"
# Validate image
if not isinstance(image, Image.Image):
return "Error: Invalid image format", 0
# Check image size (warn if too large)
max_size = 4096
if image.width > max_size or image.height > max_size:
# Resize if too large to prevent OOM
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
device = MODEL.device
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": question},
],
}
]
prompt_text = PROCESSOR.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = PROCESSOR(
text=[prompt_text],
images=[image],
return_tensors="pt",
).to(device)
generated_ids = MODEL.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
do_sample=False,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = PROCESSOR.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
answer = output_text[0].strip()
input_ids = inputs.get("input_ids")
input_length = input_ids.shape[-1] if input_ids is not None else 0
total_length = generated_ids.shape[-1]
num_generated_tokens = max(total_length - input_length, 0)
return answer, int(num_generated_tokens)
except torch.cuda.OutOfMemoryError:
torch.cuda.empty_cache()
return "Error: Out of GPU memory. Please try with a smaller image.", 0
except Exception as e:
return f"Error generating answer: {str(e)}", 0
def load_example(example_idx):
"""Load example image and question based on index"""
example_images = [
"./examples/eg1.jpg",
"./examples/eg2.jpg",
"./examples/eg3.jpg"
]
if 0 <= example_idx < len(EXAMPLE_QUESTIONS):
return Image.open(example_images[example_idx]), EXAMPLE_QUESTIONS[example_idx]
return None, ""
with gr.Blocks(title="Spatial-SSRL Spatial Reasoning") as demo:
gr.Markdown("# π Spatial-SSRL: Spatial Reasoning with Vision-Language Models")
gr.Markdown("### Understanding 3D Spatial Relationships from 2D Images")
gr.Markdown("β¨ Upload an image and ask questions about spatial relationships, locations, and orientations! β¨")
gr.Markdown(
"""
π <a href="https://arxiv.org/abs/2510.27606">Paper</a> | π <a href="https://github.com/InternLM/Spatial-SSRL">Github</a> | π€ <a href="https://huggingface.co/internlm/Spatial-SSRL-7B">Spatial-SSRL-7B Model</a> | π€ <a href="https://huggingface.co/datasets/internlm/Spatial-SSRL-81k">Spatial-SSRL-81k | π° <a href="https://huggingface.co/papers/2510.27606">Daily Paper</a>
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Input Image")
question_input = gr.Textbox(
label="Question",
placeholder="Ask a question about spatial relationships in the image...",
lines=4
)
use_format_chk = gr.Checkbox(
label="Apply format prompt (default on)",
value=True,
info="When enabled, the predefined format prompt is automatically concatenated to your question."
)
submit_button = gr.Button("Submit", variant="primary")
with gr.Column():
answer_output = gr.Textbox(label="Answer", lines=10)
token_output = gr.Number(label="Generated Tokens", precision=0)
submit_button.click(
fn=answer_question,
inputs=[image_input, question_input, use_format_chk],
outputs=[answer_output, token_output],
show_progress=True,
)
gr.Markdown("### πΈ Example Questions")
gr.Markdown("Click on an example below to load it:")
with gr.Row():
example1_btn = gr.Button("Example 1: Boat vs Fire Hydrant")
example2_btn = gr.Button("Example 2: Kid and Teddy Bear")
example3_btn = gr.Button("Example 3: RV and Dog")
example1_btn.click(
fn=lambda: load_example(0),
inputs=[],
outputs=[image_input, question_input],
)
example2_btn.click(
fn=lambda: load_example(1),
inputs=[],
outputs=[image_input, question_input],
)
example3_btn.click(
fn=lambda: load_example(2),
inputs=[],
outputs=[image_input, question_input],
)
gr.Examples(
examples=[
["./examples/eg1.jpg", EXAMPLE_QUESTIONS[0], True],
["./examples/eg2.jpg", EXAMPLE_QUESTIONS[1], True],
["./examples/eg3.jpg", EXAMPLE_QUESTIONS[2], True],
],
inputs=[image_input, question_input, use_format_chk],
outputs=[answer_output, token_output],
fn=answer_question,
cache_examples=True,
label="Complete Examples"
)
gr.Markdown("### About")
gr.Markdown(
"""
This demo showcases spatial reasoning capabilities of vision-language models. The model can:
- Understand 3D spatial relationships from 2D images
- Reason about object locations (near/far, front/behind)
- Analyze object orientations and facing directions
- Provide step-by-step reasoning before answering
"""
)
gr.Markdown("### Citation")
gr.Markdown("If you find this project useful, please kindly cite:")
citation_text = """@article{liu2025spatialssrl,
title={{Spatial-SSRL}: Enhancing Spatial Understanding via Self-Supervised Reinforcement Learning},
author={Liu, Yuhong and Zhang, Beichen and Zang, Yuhang and Cao, Yuhang and Xing, Long and Dong, Xiaoyi and Duan, Haodong and Lin, Dahua and Wang, Jiaqi},
journal={arXiv preprint arXiv:2510.27606},
year={2025}
}
}"""
gr.Code(value=citation_text, language="markdown", label="BibTeX Citation")
demo.launch()
|