Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import torch | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication' | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| MAX_PRODUCT_DIGITS = 100 | |
| def preprocess(num): | |
| num = str(num).strip().replace(' ', '') | |
| reversed_num = ' '.join(num[::-1]) | |
| return reversed_num | |
| def postprocess(raw_output): | |
| prediction = raw_output.replace(' ', '')[::-1] | |
| return prediction | |
| def predict_product(num1, num2): | |
| input_text = f'{preprocess(num1)} * {preprocess(num2)} =' | |
| inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu') | |
| model.to('cuda' if torch.cuda.is_available() else 'cpu') | |
| input_ids = inputs['input_ids'] | |
| input_len = input_ids.shape[-1] | |
| prediction = "" | |
| correct_product = "" | |
| valid_input = True | |
| try: | |
| num1_int = int(num1) | |
| num2_int = int(num2) | |
| correct_product = str(num1_int * num2_int) | |
| except ValueError: | |
| valid_input = False | |
| generated_ids = inputs['input_ids'] | |
| past_key_values = None | |
| for step in range(MAX_PRODUCT_DIGITS): # Set a maximum limit to prevent infinite loops | |
| generation_kwargs = { | |
| 'input_ids': generated_ids, | |
| 'max_new_tokens': 1, | |
| 'do_sample': False, | |
| 'past_key_values': past_key_values, | |
| 'return_dict_in_generate': True, | |
| 'use_cache': True | |
| } | |
| if step == 0: | |
| del generation_kwargs['past_key_values'] | |
| outputs = model.generate(**generation_kwargs) | |
| generated_ids = outputs.sequences | |
| next_token_id = generated_ids[0, -1] | |
| print (next_token_id) | |
| if next_token_id.item() == tokenizer.eos_token_id: | |
| print ('berak') | |
| break | |
| past_key_values = outputs.past_key_values | |
| output_text = tokenizer.decode(generated_ids[0, input_len:], skip_special_tokens=True) | |
| #prediction = postprocess(output_text) | |
| predicted_digits_reversed = output_text.strip().split(' ') | |
| print ('p', predicted_digits_reversed) | |
| correct_digits_reversed = ' '.join(correct_product)[::-1] | |
| print ('c', correct_digits_reversed) | |
| # Create the diff for HighlightedText | |
| diff = [] | |
| correct_digits = [] | |
| is_correct_sofar = True | |
| for i in range(len(predicted_digits_reversed)): | |
| predicted_digit = predicted_digits_reversed[i] | |
| correct_digit = correct_digits_reversed[i] | |
| correct_digits.append((correct_digit, None)) | |
| if i >= len(correct_digits_reversed): | |
| if predicted_digit == '0' and is_correct_sofar: | |
| is_correct_digit = True | |
| else: | |
| is_correct_digit = False | |
| else: | |
| if predicted_digit == correct_digit: | |
| is_correct_digit = True | |
| else: | |
| is_correct_digit = False | |
| if not is_correct_digit: | |
| is_correct_sofar = False | |
| if is_correct_digit: | |
| diff.append((predicted_digit, "-")) | |
| else: | |
| diff.append((predicted_digit, "+")) | |
| diff = diff[::-1] | |
| correct_digits = correct_digits[::-1] | |
| yield correct_digits, diff, "" | |
| #if valid_input: | |
| # is_correct = prediction == correct_product | |
| # result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}." | |
| #else: | |
| # result_message = "Invalid input. Could not evaluate correctness." | |
| ## Final diff for the complete prediction | |
| #final_diff = [] | |
| #for i in range(max(len(prediction), len(correct_product))): | |
| # if i < len(prediction) and i < len(correct_product) and prediction[i] == correct_product[i]: | |
| # final_diff.append((prediction[i], None)) # No highlight for correct digits | |
| # elif i < len(prediction) and (i >= len(correct_product) or prediction[i] != correct_product[i]): | |
| # final_diff.append((prediction[i], "+")) # Highlight incorrect digits in red | |
| # if i < len(correct_product) and (i >= len(prediction) or prediction[i] != correct_product[i]): | |
| # final_diff.append((correct_product[i], "-")) # Highlight missing/incorrect digits in green | |
| #yield final_diff, result_message | |
| demo = gr.Interface( | |
| fn=predict_product, | |
| inputs=[ | |
| gr.Textbox(label='First Number (up to 12 digits)', value='12345'), | |
| gr.Textbox(label='Second Number (up to 12 digits)', value='67890'), | |
| ], | |
| outputs=[ | |
| gr.HighlightedText(label='Ground Truth Product', combine_adjacent=False, show_legend=False, color_map={"-": "green", "+": "red"}), | |
| gr.HighlightedText(label='GPT2 Predicted Product', combine_adjacent=False, show_legend=False, color_map={"-": "green", "+": "red"}), | |
| gr.HTML(label='Result Message') | |
| ], | |
| title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)', | |
| description='This demo uses GPT2 to directly predict the product of two numbers without using any intermediate reasoning steps. The GPT2 model has been fine-tuned to internalize chain-of-thought reasoning within its hidden states, following our stepwise internalization approach detailed in the paper linked at the bottom of this page.', | |
| article=""" | |
| - [Paper: From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step](https://arxiv.org/pdf/2405.14838) | |
| - [Code Repository](https://github.com/da03/Internalize_CoT_Step_by_Step) | |
| - [Tweet Announcement](https://twitter.com/yuntiandeng/status/1795854740879774036) | |
| """, | |
| clear_btn=None, | |
| submit_btn="Multiply!", | |
| live=False | |
| ) | |
| demo.launch() | |