Commit
·
ab1b163
1
Parent(s):
b569680
Upload folder using huggingface_hub
Browse files- backend/__init__.py +1 -0
- backend/__pycache__/__init__.cpython-310.pyc +0 -0
- backend/__pycache__/config.cpython-310.pyc +0 -0
- backend/__pycache__/council.cpython-310.pyc +0 -0
- backend/__pycache__/debug_models.cpython-310.pyc +0 -0
- backend/__pycache__/openrouter.cpython-310.pyc +0 -0
- backend/config.py +26 -0
- backend/council.py +335 -0
- backend/debug_models.py +24 -0
- backend/main.py +199 -0
- backend/openrouter.py +79 -0
- backend/storage.py +172 -0
backend/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
"""LLM Council backend package."""
|
backend/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (180 Bytes). View file
|
|
|
backend/__pycache__/config.cpython-310.pyc
ADDED
|
Binary file (549 Bytes). View file
|
|
|
backend/__pycache__/council.cpython-310.pyc
ADDED
|
Binary file (8.46 kB). View file
|
|
|
backend/__pycache__/debug_models.cpython-310.pyc
ADDED
|
Binary file (883 Bytes). View file
|
|
|
backend/__pycache__/openrouter.cpython-310.pyc
ADDED
|
Binary file (2.46 kB). View file
|
|
|
backend/config.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Configuration for the LLM Council."""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
|
| 6 |
+
load_dotenv()
|
| 7 |
+
|
| 8 |
+
# OpenRouter API key
|
| 9 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 10 |
+
|
| 11 |
+
# Council members - list of OpenRouter model identifiers
|
| 12 |
+
COUNCIL_MODELS = [
|
| 13 |
+
"openai/gpt-5.1",
|
| 14 |
+
"google/gemini-3-pro-preview",
|
| 15 |
+
"anthropic/claude-sonnet-4.5",
|
| 16 |
+
"x-ai/grok-4",
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
# Chairman model - synthesizes final response
|
| 20 |
+
CHAIRMAN_MODEL = "google/gemini-3-pro-preview"
|
| 21 |
+
|
| 22 |
+
# OpenRouter API endpoint
|
| 23 |
+
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
|
| 24 |
+
|
| 25 |
+
# Data directory for conversation storage
|
| 26 |
+
DATA_DIR = "data/conversations"
|
backend/council.py
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""3-stage LLM Council orchestration."""
|
| 2 |
+
|
| 3 |
+
from typing import List, Dict, Any, Tuple
|
| 4 |
+
from .openrouter import query_models_parallel, query_model
|
| 5 |
+
from .config import COUNCIL_MODELS, CHAIRMAN_MODEL
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
async def stage1_collect_responses(user_query: str) -> List[Dict[str, Any]]:
|
| 9 |
+
"""
|
| 10 |
+
Stage 1: Collect individual responses from all council models.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
user_query: The user's question
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
List of dicts with 'model' and 'response' keys
|
| 17 |
+
"""
|
| 18 |
+
messages = [{"role": "user", "content": user_query}]
|
| 19 |
+
|
| 20 |
+
# Query all models in parallel
|
| 21 |
+
responses = await query_models_parallel(COUNCIL_MODELS, messages)
|
| 22 |
+
|
| 23 |
+
# Format results
|
| 24 |
+
stage1_results = []
|
| 25 |
+
for model, response in responses.items():
|
| 26 |
+
if response is not None: # Only include successful responses
|
| 27 |
+
stage1_results.append({
|
| 28 |
+
"model": model,
|
| 29 |
+
"response": response.get('content', '')
|
| 30 |
+
})
|
| 31 |
+
|
| 32 |
+
return stage1_results
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
async def stage2_collect_rankings(
|
| 36 |
+
user_query: str,
|
| 37 |
+
stage1_results: List[Dict[str, Any]]
|
| 38 |
+
) -> Tuple[List[Dict[str, Any]], Dict[str, str]]:
|
| 39 |
+
"""
|
| 40 |
+
Stage 2: Each model ranks the anonymized responses.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
user_query: The original user query
|
| 44 |
+
stage1_results: Results from Stage 1
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
Tuple of (rankings list, label_to_model mapping)
|
| 48 |
+
"""
|
| 49 |
+
# Create anonymized labels for responses (Response A, Response B, etc.)
|
| 50 |
+
labels = [chr(65 + i) for i in range(len(stage1_results))] # A, B, C, ...
|
| 51 |
+
|
| 52 |
+
# Create mapping from label to model name
|
| 53 |
+
label_to_model = {
|
| 54 |
+
f"Response {label}": result['model']
|
| 55 |
+
for label, result in zip(labels, stage1_results)
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
# Build the ranking prompt
|
| 59 |
+
responses_text = "\n\n".join([
|
| 60 |
+
f"Response {label}:\n{result['response']}"
|
| 61 |
+
for label, result in zip(labels, stage1_results)
|
| 62 |
+
])
|
| 63 |
+
|
| 64 |
+
ranking_prompt = f"""You are evaluating different responses to the following question:
|
| 65 |
+
|
| 66 |
+
Question: {user_query}
|
| 67 |
+
|
| 68 |
+
Here are the responses from different models (anonymized):
|
| 69 |
+
|
| 70 |
+
{responses_text}
|
| 71 |
+
|
| 72 |
+
Your task:
|
| 73 |
+
1. First, evaluate each response individually. For each response, explain what it does well and what it does poorly.
|
| 74 |
+
2. Then, at the very end of your response, provide a final ranking.
|
| 75 |
+
|
| 76 |
+
IMPORTANT: Your final ranking MUST be formatted EXACTLY as follows:
|
| 77 |
+
- Start with the line "FINAL RANKING:" (all caps, with colon)
|
| 78 |
+
- Then list the responses from best to worst as a numbered list
|
| 79 |
+
- Each line should be: number, period, space, then ONLY the response label (e.g., "1. Response A")
|
| 80 |
+
- Do not add any other text or explanations in the ranking section
|
| 81 |
+
|
| 82 |
+
Example of the correct format for your ENTIRE response:
|
| 83 |
+
|
| 84 |
+
Response A provides good detail on X but misses Y...
|
| 85 |
+
Response B is accurate but lacks depth on Z...
|
| 86 |
+
Response C offers the most comprehensive answer...
|
| 87 |
+
|
| 88 |
+
FINAL RANKING:
|
| 89 |
+
1. Response C
|
| 90 |
+
2. Response A
|
| 91 |
+
3. Response B
|
| 92 |
+
|
| 93 |
+
Now provide your evaluation and ranking:"""
|
| 94 |
+
|
| 95 |
+
messages = [{"role": "user", "content": ranking_prompt}]
|
| 96 |
+
|
| 97 |
+
# Get rankings from all council models in parallel
|
| 98 |
+
responses = await query_models_parallel(COUNCIL_MODELS, messages)
|
| 99 |
+
|
| 100 |
+
# Format results
|
| 101 |
+
stage2_results = []
|
| 102 |
+
for model, response in responses.items():
|
| 103 |
+
if response is not None:
|
| 104 |
+
full_text = response.get('content', '')
|
| 105 |
+
parsed = parse_ranking_from_text(full_text)
|
| 106 |
+
stage2_results.append({
|
| 107 |
+
"model": model,
|
| 108 |
+
"ranking": full_text,
|
| 109 |
+
"parsed_ranking": parsed
|
| 110 |
+
})
|
| 111 |
+
|
| 112 |
+
return stage2_results, label_to_model
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
async def stage3_synthesize_final(
|
| 116 |
+
user_query: str,
|
| 117 |
+
stage1_results: List[Dict[str, Any]],
|
| 118 |
+
stage2_results: List[Dict[str, Any]]
|
| 119 |
+
) -> Dict[str, Any]:
|
| 120 |
+
"""
|
| 121 |
+
Stage 3: Chairman synthesizes final response.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
user_query: The original user query
|
| 125 |
+
stage1_results: Individual model responses from Stage 1
|
| 126 |
+
stage2_results: Rankings from Stage 2
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
Dict with 'model' and 'response' keys
|
| 130 |
+
"""
|
| 131 |
+
# Build comprehensive context for chairman
|
| 132 |
+
stage1_text = "\n\n".join([
|
| 133 |
+
f"Model: {result['model']}\nResponse: {result['response']}"
|
| 134 |
+
for result in stage1_results
|
| 135 |
+
])
|
| 136 |
+
|
| 137 |
+
stage2_text = "\n\n".join([
|
| 138 |
+
f"Model: {result['model']}\nRanking: {result['ranking']}"
|
| 139 |
+
for result in stage2_results
|
| 140 |
+
])
|
| 141 |
+
|
| 142 |
+
chairman_prompt = f"""You are the Chairman of an LLM Council. Multiple AI models have provided responses to a user's question, and then ranked each other's responses.
|
| 143 |
+
|
| 144 |
+
Original Question: {user_query}
|
| 145 |
+
|
| 146 |
+
STAGE 1 - Individual Responses:
|
| 147 |
+
{stage1_text}
|
| 148 |
+
|
| 149 |
+
STAGE 2 - Peer Rankings:
|
| 150 |
+
{stage2_text}
|
| 151 |
+
|
| 152 |
+
Your task as Chairman is to synthesize all of this information into a single, comprehensive, accurate answer to the user's original question. Consider:
|
| 153 |
+
- The individual responses and their insights
|
| 154 |
+
- The peer rankings and what they reveal about response quality
|
| 155 |
+
- Any patterns of agreement or disagreement
|
| 156 |
+
|
| 157 |
+
Provide a clear, well-reasoned final answer that represents the council's collective wisdom:"""
|
| 158 |
+
|
| 159 |
+
messages = [{"role": "user", "content": chairman_prompt}]
|
| 160 |
+
|
| 161 |
+
# Query the chairman model
|
| 162 |
+
response = await query_model(CHAIRMAN_MODEL, messages)
|
| 163 |
+
|
| 164 |
+
if response is None:
|
| 165 |
+
# Fallback if chairman fails
|
| 166 |
+
return {
|
| 167 |
+
"model": CHAIRMAN_MODEL,
|
| 168 |
+
"response": "Error: Unable to generate final synthesis."
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
return {
|
| 172 |
+
"model": CHAIRMAN_MODEL,
|
| 173 |
+
"response": response.get('content', '')
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def parse_ranking_from_text(ranking_text: str) -> List[str]:
|
| 178 |
+
"""
|
| 179 |
+
Parse the FINAL RANKING section from the model's response.
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
ranking_text: The full text response from the model
|
| 183 |
+
|
| 184 |
+
Returns:
|
| 185 |
+
List of response labels in ranked order
|
| 186 |
+
"""
|
| 187 |
+
import re
|
| 188 |
+
|
| 189 |
+
# Look for "FINAL RANKING:" section
|
| 190 |
+
if "FINAL RANKING:" in ranking_text:
|
| 191 |
+
# Extract everything after "FINAL RANKING:"
|
| 192 |
+
parts = ranking_text.split("FINAL RANKING:")
|
| 193 |
+
if len(parts) >= 2:
|
| 194 |
+
ranking_section = parts[1]
|
| 195 |
+
# Try to extract numbered list format (e.g., "1. Response A")
|
| 196 |
+
# This pattern looks for: number, period, optional space, "Response X"
|
| 197 |
+
numbered_matches = re.findall(r'\d+\.\s*Response [A-Z]', ranking_section)
|
| 198 |
+
if numbered_matches:
|
| 199 |
+
# Extract just the "Response X" part
|
| 200 |
+
return [re.search(r'Response [A-Z]', m).group() for m in numbered_matches]
|
| 201 |
+
|
| 202 |
+
# Fallback: Extract all "Response X" patterns in order
|
| 203 |
+
matches = re.findall(r'Response [A-Z]', ranking_section)
|
| 204 |
+
return matches
|
| 205 |
+
|
| 206 |
+
# Fallback: try to find any "Response X" patterns in order
|
| 207 |
+
matches = re.findall(r'Response [A-Z]', ranking_text)
|
| 208 |
+
return matches
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def calculate_aggregate_rankings(
|
| 212 |
+
stage2_results: List[Dict[str, Any]],
|
| 213 |
+
label_to_model: Dict[str, str]
|
| 214 |
+
) -> List[Dict[str, Any]]:
|
| 215 |
+
"""
|
| 216 |
+
Calculate aggregate rankings across all models.
|
| 217 |
+
|
| 218 |
+
Args:
|
| 219 |
+
stage2_results: Rankings from each model
|
| 220 |
+
label_to_model: Mapping from anonymous labels to model names
|
| 221 |
+
|
| 222 |
+
Returns:
|
| 223 |
+
List of dicts with model name and average rank, sorted best to worst
|
| 224 |
+
"""
|
| 225 |
+
from collections import defaultdict
|
| 226 |
+
|
| 227 |
+
# Track positions for each model
|
| 228 |
+
model_positions = defaultdict(list)
|
| 229 |
+
|
| 230 |
+
for ranking in stage2_results:
|
| 231 |
+
ranking_text = ranking['ranking']
|
| 232 |
+
|
| 233 |
+
# Parse the ranking from the structured format
|
| 234 |
+
parsed_ranking = parse_ranking_from_text(ranking_text)
|
| 235 |
+
|
| 236 |
+
for position, label in enumerate(parsed_ranking, start=1):
|
| 237 |
+
if label in label_to_model:
|
| 238 |
+
model_name = label_to_model[label]
|
| 239 |
+
model_positions[model_name].append(position)
|
| 240 |
+
|
| 241 |
+
# Calculate average position for each model
|
| 242 |
+
aggregate = []
|
| 243 |
+
for model, positions in model_positions.items():
|
| 244 |
+
if positions:
|
| 245 |
+
avg_rank = sum(positions) / len(positions)
|
| 246 |
+
aggregate.append({
|
| 247 |
+
"model": model,
|
| 248 |
+
"average_rank": round(avg_rank, 2),
|
| 249 |
+
"rankings_count": len(positions)
|
| 250 |
+
})
|
| 251 |
+
|
| 252 |
+
# Sort by average rank (lower is better)
|
| 253 |
+
aggregate.sort(key=lambda x: x['average_rank'])
|
| 254 |
+
|
| 255 |
+
return aggregate
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
async def generate_conversation_title(user_query: str) -> str:
|
| 259 |
+
"""
|
| 260 |
+
Generate a short title for a conversation based on the first user message.
|
| 261 |
+
|
| 262 |
+
Args:
|
| 263 |
+
user_query: The first user message
|
| 264 |
+
|
| 265 |
+
Returns:
|
| 266 |
+
A short title (3-5 words)
|
| 267 |
+
"""
|
| 268 |
+
title_prompt = f"""Generate a very short title (3-5 words maximum) that summarizes the following question.
|
| 269 |
+
The title should be concise and descriptive. Do not use quotes or punctuation in the title.
|
| 270 |
+
|
| 271 |
+
Question: {user_query}
|
| 272 |
+
|
| 273 |
+
Title:"""
|
| 274 |
+
|
| 275 |
+
messages = [{"role": "user", "content": title_prompt}]
|
| 276 |
+
|
| 277 |
+
# Use gemini-2.5-flash for title generation (fast and cheap)
|
| 278 |
+
response = await query_model("google/gemini-2.5-flash", messages, timeout=30.0)
|
| 279 |
+
|
| 280 |
+
if response is None:
|
| 281 |
+
# Fallback to a generic title
|
| 282 |
+
return "New Conversation"
|
| 283 |
+
|
| 284 |
+
title = response.get('content', 'New Conversation').strip()
|
| 285 |
+
|
| 286 |
+
# Clean up the title - remove quotes, limit length
|
| 287 |
+
title = title.strip('"\'')
|
| 288 |
+
|
| 289 |
+
# Truncate if too long
|
| 290 |
+
if len(title) > 50:
|
| 291 |
+
title = title[:47] + "..."
|
| 292 |
+
|
| 293 |
+
return title
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
async def run_full_council(user_query: str) -> Tuple[List, List, Dict, Dict]:
|
| 297 |
+
"""
|
| 298 |
+
Run the complete 3-stage council process.
|
| 299 |
+
|
| 300 |
+
Args:
|
| 301 |
+
user_query: The user's question
|
| 302 |
+
|
| 303 |
+
Returns:
|
| 304 |
+
Tuple of (stage1_results, stage2_results, stage3_result, metadata)
|
| 305 |
+
"""
|
| 306 |
+
# Stage 1: Collect individual responses
|
| 307 |
+
stage1_results = await stage1_collect_responses(user_query)
|
| 308 |
+
|
| 309 |
+
# If no models responded successfully, return error
|
| 310 |
+
if not stage1_results:
|
| 311 |
+
return [], [], {
|
| 312 |
+
"model": "error",
|
| 313 |
+
"response": "All models failed to respond. Please try again."
|
| 314 |
+
}, {}
|
| 315 |
+
|
| 316 |
+
# Stage 2: Collect rankings
|
| 317 |
+
stage2_results, label_to_model = await stage2_collect_rankings(user_query, stage1_results)
|
| 318 |
+
|
| 319 |
+
# Calculate aggregate rankings
|
| 320 |
+
aggregate_rankings = calculate_aggregate_rankings(stage2_results, label_to_model)
|
| 321 |
+
|
| 322 |
+
# Stage 3: Synthesize final answer
|
| 323 |
+
stage3_result = await stage3_synthesize_final(
|
| 324 |
+
user_query,
|
| 325 |
+
stage1_results,
|
| 326 |
+
stage2_results
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
# Prepare metadata
|
| 330 |
+
metadata = {
|
| 331 |
+
"label_to_model": label_to_model,
|
| 332 |
+
"aggregate_rankings": aggregate_rankings
|
| 333 |
+
}
|
| 334 |
+
|
| 335 |
+
return stage1_results, stage2_results, stage3_result, metadata
|
backend/debug_models.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import asyncio
|
| 3 |
+
import os
|
| 4 |
+
from backend.openrouter import query_model
|
| 5 |
+
from backend.config import COUNCIL_MODELS
|
| 6 |
+
|
| 7 |
+
async def test_models():
|
| 8 |
+
print("Testing OpenRouter connection...")
|
| 9 |
+
print(f"API Key present: {'Yes' if os.getenv('OPENROUTER_API_KEY') else 'No'}")
|
| 10 |
+
|
| 11 |
+
messages = [{"role": "user", "content": "Say hello!"}]
|
| 12 |
+
|
| 13 |
+
for model in COUNCIL_MODELS:
|
| 14 |
+
print(f"\nTesting model: {model}")
|
| 15 |
+
response = await query_model(model, messages, timeout=30.0)
|
| 16 |
+
if response:
|
| 17 |
+
print("✅ Success!")
|
| 18 |
+
print(f"Response: {response.get('content')[:50]}...")
|
| 19 |
+
else:
|
| 20 |
+
print("❌ Failed")
|
| 21 |
+
|
| 22 |
+
if __name__ == "__main__":
|
| 23 |
+
asyncio.run(test_models())
|
| 24 |
+
|
backend/main.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""FastAPI backend for LLM Council."""
|
| 2 |
+
|
| 3 |
+
from fastapi import FastAPI, HTTPException
|
| 4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
+
from fastapi.responses import StreamingResponse
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
from typing import List, Dict, Any
|
| 8 |
+
import uuid
|
| 9 |
+
import json
|
| 10 |
+
import asyncio
|
| 11 |
+
|
| 12 |
+
from . import storage
|
| 13 |
+
from .council import run_full_council, generate_conversation_title, stage1_collect_responses, stage2_collect_rankings, stage3_synthesize_final, calculate_aggregate_rankings
|
| 14 |
+
|
| 15 |
+
app = FastAPI(title="LLM Council API")
|
| 16 |
+
|
| 17 |
+
# Enable CORS for local development
|
| 18 |
+
app.add_middleware(
|
| 19 |
+
CORSMiddleware,
|
| 20 |
+
allow_origins=["http://localhost:5173", "http://localhost:3000"],
|
| 21 |
+
allow_credentials=True,
|
| 22 |
+
allow_methods=["*"],
|
| 23 |
+
allow_headers=["*"],
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class CreateConversationRequest(BaseModel):
|
| 28 |
+
"""Request to create a new conversation."""
|
| 29 |
+
pass
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class SendMessageRequest(BaseModel):
|
| 33 |
+
"""Request to send a message in a conversation."""
|
| 34 |
+
content: str
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class ConversationMetadata(BaseModel):
|
| 38 |
+
"""Conversation metadata for list view."""
|
| 39 |
+
id: str
|
| 40 |
+
created_at: str
|
| 41 |
+
title: str
|
| 42 |
+
message_count: int
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class Conversation(BaseModel):
|
| 46 |
+
"""Full conversation with all messages."""
|
| 47 |
+
id: str
|
| 48 |
+
created_at: str
|
| 49 |
+
title: str
|
| 50 |
+
messages: List[Dict[str, Any]]
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
@app.get("/")
|
| 54 |
+
async def root():
|
| 55 |
+
"""Health check endpoint."""
|
| 56 |
+
return {"status": "ok", "service": "LLM Council API"}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@app.get("/api/conversations", response_model=List[ConversationMetadata])
|
| 60 |
+
async def list_conversations():
|
| 61 |
+
"""List all conversations (metadata only)."""
|
| 62 |
+
return storage.list_conversations()
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
@app.post("/api/conversations", response_model=Conversation)
|
| 66 |
+
async def create_conversation(request: CreateConversationRequest):
|
| 67 |
+
"""Create a new conversation."""
|
| 68 |
+
conversation_id = str(uuid.uuid4())
|
| 69 |
+
conversation = storage.create_conversation(conversation_id)
|
| 70 |
+
return conversation
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@app.get("/api/conversations/{conversation_id}", response_model=Conversation)
|
| 74 |
+
async def get_conversation(conversation_id: str):
|
| 75 |
+
"""Get a specific conversation with all its messages."""
|
| 76 |
+
conversation = storage.get_conversation(conversation_id)
|
| 77 |
+
if conversation is None:
|
| 78 |
+
raise HTTPException(status_code=404, detail="Conversation not found")
|
| 79 |
+
return conversation
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
@app.post("/api/conversations/{conversation_id}/message")
|
| 83 |
+
async def send_message(conversation_id: str, request: SendMessageRequest):
|
| 84 |
+
"""
|
| 85 |
+
Send a message and run the 3-stage council process.
|
| 86 |
+
Returns the complete response with all stages.
|
| 87 |
+
"""
|
| 88 |
+
# Check if conversation exists
|
| 89 |
+
conversation = storage.get_conversation(conversation_id)
|
| 90 |
+
if conversation is None:
|
| 91 |
+
raise HTTPException(status_code=404, detail="Conversation not found")
|
| 92 |
+
|
| 93 |
+
# Check if this is the first message
|
| 94 |
+
is_first_message = len(conversation["messages"]) == 0
|
| 95 |
+
|
| 96 |
+
# Add user message
|
| 97 |
+
storage.add_user_message(conversation_id, request.content)
|
| 98 |
+
|
| 99 |
+
# If this is the first message, generate a title
|
| 100 |
+
if is_first_message:
|
| 101 |
+
title = await generate_conversation_title(request.content)
|
| 102 |
+
storage.update_conversation_title(conversation_id, title)
|
| 103 |
+
|
| 104 |
+
# Run the 3-stage council process
|
| 105 |
+
stage1_results, stage2_results, stage3_result, metadata = await run_full_council(
|
| 106 |
+
request.content
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# Add assistant message with all stages
|
| 110 |
+
storage.add_assistant_message(
|
| 111 |
+
conversation_id,
|
| 112 |
+
stage1_results,
|
| 113 |
+
stage2_results,
|
| 114 |
+
stage3_result
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Return the complete response with metadata
|
| 118 |
+
return {
|
| 119 |
+
"stage1": stage1_results,
|
| 120 |
+
"stage2": stage2_results,
|
| 121 |
+
"stage3": stage3_result,
|
| 122 |
+
"metadata": metadata
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
@app.post("/api/conversations/{conversation_id}/message/stream")
|
| 127 |
+
async def send_message_stream(conversation_id: str, request: SendMessageRequest):
|
| 128 |
+
"""
|
| 129 |
+
Send a message and stream the 3-stage council process.
|
| 130 |
+
Returns Server-Sent Events as each stage completes.
|
| 131 |
+
"""
|
| 132 |
+
# Check if conversation exists
|
| 133 |
+
conversation = storage.get_conversation(conversation_id)
|
| 134 |
+
if conversation is None:
|
| 135 |
+
raise HTTPException(status_code=404, detail="Conversation not found")
|
| 136 |
+
|
| 137 |
+
# Check if this is the first message
|
| 138 |
+
is_first_message = len(conversation["messages"]) == 0
|
| 139 |
+
|
| 140 |
+
async def event_generator():
|
| 141 |
+
try:
|
| 142 |
+
# Add user message
|
| 143 |
+
storage.add_user_message(conversation_id, request.content)
|
| 144 |
+
|
| 145 |
+
# Start title generation in parallel (don't await yet)
|
| 146 |
+
title_task = None
|
| 147 |
+
if is_first_message:
|
| 148 |
+
title_task = asyncio.create_task(generate_conversation_title(request.content))
|
| 149 |
+
|
| 150 |
+
# Stage 1: Collect responses
|
| 151 |
+
yield f"data: {json.dumps({'type': 'stage1_start'})}\n\n"
|
| 152 |
+
stage1_results = await stage1_collect_responses(request.content)
|
| 153 |
+
yield f"data: {json.dumps({'type': 'stage1_complete', 'data': stage1_results})}\n\n"
|
| 154 |
+
|
| 155 |
+
# Stage 2: Collect rankings
|
| 156 |
+
yield f"data: {json.dumps({'type': 'stage2_start'})}\n\n"
|
| 157 |
+
stage2_results, label_to_model = await stage2_collect_rankings(request.content, stage1_results)
|
| 158 |
+
aggregate_rankings = calculate_aggregate_rankings(stage2_results, label_to_model)
|
| 159 |
+
yield f"data: {json.dumps({'type': 'stage2_complete', 'data': stage2_results, 'metadata': {'label_to_model': label_to_model, 'aggregate_rankings': aggregate_rankings}})}\n\n"
|
| 160 |
+
|
| 161 |
+
# Stage 3: Synthesize final answer
|
| 162 |
+
yield f"data: {json.dumps({'type': 'stage3_start'})}\n\n"
|
| 163 |
+
stage3_result = await stage3_synthesize_final(request.content, stage1_results, stage2_results)
|
| 164 |
+
yield f"data: {json.dumps({'type': 'stage3_complete', 'data': stage3_result})}\n\n"
|
| 165 |
+
|
| 166 |
+
# Wait for title generation if it was started
|
| 167 |
+
if title_task:
|
| 168 |
+
title = await title_task
|
| 169 |
+
storage.update_conversation_title(conversation_id, title)
|
| 170 |
+
yield f"data: {json.dumps({'type': 'title_complete', 'data': {'title': title}})}\n\n"
|
| 171 |
+
|
| 172 |
+
# Save complete assistant message
|
| 173 |
+
storage.add_assistant_message(
|
| 174 |
+
conversation_id,
|
| 175 |
+
stage1_results,
|
| 176 |
+
stage2_results,
|
| 177 |
+
stage3_result
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Send completion event
|
| 181 |
+
yield f"data: {json.dumps({'type': 'complete'})}\n\n"
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
# Send error event
|
| 185 |
+
yield f"data: {json.dumps({'type': 'error', 'message': str(e)})}\n\n"
|
| 186 |
+
|
| 187 |
+
return StreamingResponse(
|
| 188 |
+
event_generator(),
|
| 189 |
+
media_type="text/event-stream",
|
| 190 |
+
headers={
|
| 191 |
+
"Cache-Control": "no-cache",
|
| 192 |
+
"Connection": "keep-alive",
|
| 193 |
+
}
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
if __name__ == "__main__":
|
| 198 |
+
import uvicorn
|
| 199 |
+
uvicorn.run(app, host="0.0.0.0", port=8001)
|
backend/openrouter.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""OpenRouter API client for making LLM requests."""
|
| 2 |
+
|
| 3 |
+
import httpx
|
| 4 |
+
from typing import List, Dict, Any, Optional
|
| 5 |
+
from .config import OPENROUTER_API_KEY, OPENROUTER_API_URL
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
async def query_model(
|
| 9 |
+
model: str,
|
| 10 |
+
messages: List[Dict[str, str]],
|
| 11 |
+
timeout: float = 120.0
|
| 12 |
+
) -> Optional[Dict[str, Any]]:
|
| 13 |
+
"""
|
| 14 |
+
Query a single model via OpenRouter API.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
model: OpenRouter model identifier (e.g., "openai/gpt-4o")
|
| 18 |
+
messages: List of message dicts with 'role' and 'content'
|
| 19 |
+
timeout: Request timeout in seconds
|
| 20 |
+
|
| 21 |
+
Returns:
|
| 22 |
+
Response dict with 'content' and optional 'reasoning_details', or None if failed
|
| 23 |
+
"""
|
| 24 |
+
headers = {
|
| 25 |
+
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
| 26 |
+
"Content-Type": "application/json",
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
payload = {
|
| 30 |
+
"model": model,
|
| 31 |
+
"messages": messages,
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
async with httpx.AsyncClient(timeout=timeout) as client:
|
| 36 |
+
response = await client.post(
|
| 37 |
+
OPENROUTER_API_URL,
|
| 38 |
+
headers=headers,
|
| 39 |
+
json=payload
|
| 40 |
+
)
|
| 41 |
+
response.raise_for_status()
|
| 42 |
+
|
| 43 |
+
data = response.json()
|
| 44 |
+
message = data['choices'][0]['message']
|
| 45 |
+
|
| 46 |
+
return {
|
| 47 |
+
'content': message.get('content'),
|
| 48 |
+
'reasoning_details': message.get('reasoning_details')
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
except Exception as e:
|
| 52 |
+
print(f"Error querying model {model}: {e}")
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
async def query_models_parallel(
|
| 57 |
+
models: List[str],
|
| 58 |
+
messages: List[Dict[str, str]]
|
| 59 |
+
) -> Dict[str, Optional[Dict[str, Any]]]:
|
| 60 |
+
"""
|
| 61 |
+
Query multiple models in parallel.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
models: List of OpenRouter model identifiers
|
| 65 |
+
messages: List of message dicts to send to each model
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
Dict mapping model identifier to response dict (or None if failed)
|
| 69 |
+
"""
|
| 70 |
+
import asyncio
|
| 71 |
+
|
| 72 |
+
# Create tasks for all models
|
| 73 |
+
tasks = [query_model(model, messages) for model in models]
|
| 74 |
+
|
| 75 |
+
# Wait for all to complete
|
| 76 |
+
responses = await asyncio.gather(*tasks)
|
| 77 |
+
|
| 78 |
+
# Map models to their responses
|
| 79 |
+
return {model: response for model, response in zip(models, responses)}
|
backend/storage.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""JSON-based storage for conversations."""
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
from typing import List, Dict, Any, Optional
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from .config import DATA_DIR
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def ensure_data_dir():
|
| 12 |
+
"""Ensure the data directory exists."""
|
| 13 |
+
Path(DATA_DIR).mkdir(parents=True, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def get_conversation_path(conversation_id: str) -> str:
|
| 17 |
+
"""Get the file path for a conversation."""
|
| 18 |
+
return os.path.join(DATA_DIR, f"{conversation_id}.json")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def create_conversation(conversation_id: str) -> Dict[str, Any]:
|
| 22 |
+
"""
|
| 23 |
+
Create a new conversation.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
conversation_id: Unique identifier for the conversation
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
New conversation dict
|
| 30 |
+
"""
|
| 31 |
+
ensure_data_dir()
|
| 32 |
+
|
| 33 |
+
conversation = {
|
| 34 |
+
"id": conversation_id,
|
| 35 |
+
"created_at": datetime.utcnow().isoformat(),
|
| 36 |
+
"title": "New Conversation",
|
| 37 |
+
"messages": []
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
# Save to file
|
| 41 |
+
path = get_conversation_path(conversation_id)
|
| 42 |
+
with open(path, 'w') as f:
|
| 43 |
+
json.dump(conversation, f, indent=2)
|
| 44 |
+
|
| 45 |
+
return conversation
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_conversation(conversation_id: str) -> Optional[Dict[str, Any]]:
|
| 49 |
+
"""
|
| 50 |
+
Load a conversation from storage.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
conversation_id: Unique identifier for the conversation
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
Conversation dict or None if not found
|
| 57 |
+
"""
|
| 58 |
+
path = get_conversation_path(conversation_id)
|
| 59 |
+
|
| 60 |
+
if not os.path.exists(path):
|
| 61 |
+
return None
|
| 62 |
+
|
| 63 |
+
with open(path, 'r') as f:
|
| 64 |
+
return json.load(f)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def save_conversation(conversation: Dict[str, Any]):
|
| 68 |
+
"""
|
| 69 |
+
Save a conversation to storage.
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
conversation: Conversation dict to save
|
| 73 |
+
"""
|
| 74 |
+
ensure_data_dir()
|
| 75 |
+
|
| 76 |
+
path = get_conversation_path(conversation['id'])
|
| 77 |
+
with open(path, 'w') as f:
|
| 78 |
+
json.dump(conversation, f, indent=2)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def list_conversations() -> List[Dict[str, Any]]:
|
| 82 |
+
"""
|
| 83 |
+
List all conversations (metadata only).
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
List of conversation metadata dicts
|
| 87 |
+
"""
|
| 88 |
+
ensure_data_dir()
|
| 89 |
+
|
| 90 |
+
conversations = []
|
| 91 |
+
for filename in os.listdir(DATA_DIR):
|
| 92 |
+
if filename.endswith('.json'):
|
| 93 |
+
path = os.path.join(DATA_DIR, filename)
|
| 94 |
+
with open(path, 'r') as f:
|
| 95 |
+
data = json.load(f)
|
| 96 |
+
# Return metadata only
|
| 97 |
+
conversations.append({
|
| 98 |
+
"id": data["id"],
|
| 99 |
+
"created_at": data["created_at"],
|
| 100 |
+
"title": data.get("title", "New Conversation"),
|
| 101 |
+
"message_count": len(data["messages"])
|
| 102 |
+
})
|
| 103 |
+
|
| 104 |
+
# Sort by creation time, newest first
|
| 105 |
+
conversations.sort(key=lambda x: x["created_at"], reverse=True)
|
| 106 |
+
|
| 107 |
+
return conversations
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def add_user_message(conversation_id: str, content: str):
|
| 111 |
+
"""
|
| 112 |
+
Add a user message to a conversation.
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
conversation_id: Conversation identifier
|
| 116 |
+
content: User message content
|
| 117 |
+
"""
|
| 118 |
+
conversation = get_conversation(conversation_id)
|
| 119 |
+
if conversation is None:
|
| 120 |
+
raise ValueError(f"Conversation {conversation_id} not found")
|
| 121 |
+
|
| 122 |
+
conversation["messages"].append({
|
| 123 |
+
"role": "user",
|
| 124 |
+
"content": content
|
| 125 |
+
})
|
| 126 |
+
|
| 127 |
+
save_conversation(conversation)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def add_assistant_message(
|
| 131 |
+
conversation_id: str,
|
| 132 |
+
stage1: List[Dict[str, Any]],
|
| 133 |
+
stage2: List[Dict[str, Any]],
|
| 134 |
+
stage3: Dict[str, Any]
|
| 135 |
+
):
|
| 136 |
+
"""
|
| 137 |
+
Add an assistant message with all 3 stages to a conversation.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
conversation_id: Conversation identifier
|
| 141 |
+
stage1: List of individual model responses
|
| 142 |
+
stage2: List of model rankings
|
| 143 |
+
stage3: Final synthesized response
|
| 144 |
+
"""
|
| 145 |
+
conversation = get_conversation(conversation_id)
|
| 146 |
+
if conversation is None:
|
| 147 |
+
raise ValueError(f"Conversation {conversation_id} not found")
|
| 148 |
+
|
| 149 |
+
conversation["messages"].append({
|
| 150 |
+
"role": "assistant",
|
| 151 |
+
"stage1": stage1,
|
| 152 |
+
"stage2": stage2,
|
| 153 |
+
"stage3": stage3
|
| 154 |
+
})
|
| 155 |
+
|
| 156 |
+
save_conversation(conversation)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def update_conversation_title(conversation_id: str, title: str):
|
| 160 |
+
"""
|
| 161 |
+
Update the title of a conversation.
|
| 162 |
+
|
| 163 |
+
Args:
|
| 164 |
+
conversation_id: Conversation identifier
|
| 165 |
+
title: New title for the conversation
|
| 166 |
+
"""
|
| 167 |
+
conversation = get_conversation(conversation_id)
|
| 168 |
+
if conversation is None:
|
| 169 |
+
raise ValueError(f"Conversation {conversation_id} not found")
|
| 170 |
+
|
| 171 |
+
conversation["title"] = title
|
| 172 |
+
save_conversation(conversation)
|