Spaces:
Running
Running
File size: 10,160 Bytes
8f1e7e2 6169a19 8f1e7e2 6169a19 8f1e7e2 1622555 8f1e7e2 bf76071 8f1e7e2 6169a19 8f1e7e2 6169a19 89713bb 6169a19 8f1e7e2 6169a19 7aabe2d 6169a19 8f1e7e2 89713bb 8f1e7e2 5e2eed0 8f1e7e2 709cf94 8f1e7e2 709cf94 8f1e7e2 fbca905 8f1e7e2 100ff06 8f1e7e2 2ef984e 8f1e7e2 fbca905 0c93559 8f1e7e2 100ff06 8f1e7e2 1288c9d 8f1e7e2 fbca905 8f1e7e2 89713bb 8f1e7e2 bf76071 8f1e7e2 f4cc1fa a696c60 8f1e7e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import json
import traceback
from constants import *
from huggingface_hub import Repository
from eval_final_results import eval_final
HF_TOKEN = os.environ.get("HF_TOKEN")
global data_component, filter_component
# --------------------------
# Restored clickable helpers
# --------------------------
def make_clickable_model(model_name: str, model_link: str) -> str:
"""
将模型名转换为可点击的 Markdown 链接。
"""
if not model_link or model_link.strip() == "":
return model_name
return f"[{model_name}]({model_link})"
def make_clickable_user(user_name: str) -> str:
"""
将提交者名变为可点击的 HuggingFace 链接。
如果你未来添加 Submitter 列(通常来自 CSV),就能使用。
"""
if not user_name or user_name.strip() == "":
return user_name
return f"[{user_name}](https://huggingface.co/{user_name})"
def get_submissions() -> pd.DataFrame:
"""
从 HuggingFace Dataset 拉取 leaderboard 数据。
封装了 repo 初始化、pull 和 CSV 加载。
"""
submission_repo = Repository(
local_dir=SUBMISSION_NAME,
clone_from=SUBMISSION_URL,
use_auth_token=HF_TOKEN,
repo_type="dataset"
)
submission_repo.git_pull()
df = pd.read_csv(CSV_DIR)
return df
def download_csv():
# pull the results and return this file!
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
repo_type="dataset")
submission_repo.git_pull()
return CSV_DIR, gr.update(visible=True)
# return CSV_DIR
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
model_date:str,
LLM_type: str,
LLM_name_textbox: str,
):
if input_file is None:
return "Error! Empty file!"
# upload_data = json.loads(input_file)
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
repo_type="dataset",git_user="auto-uploader",git_email="uploader@163.com")
submission_repo.git_pull()
csv_data = pd.read_csv(CSV_DIR)
try:
upload_data = eval_final(test_answer_file,dev_answer_file, input_file)
except:
error_message = traceback.format_exc()
print("Error:", error_message)
return f"Error:\n```\n{error_message}\n```"
if LLM_type == 'Other':
LLM_name = LLM_name_textbox
else:
LLM_name = LLM_type
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '' or "](" in model_name:
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
# add new data
new_data = [
model_name,
LLM_name,
model_date,
model_link
]
try:
for key in TASK_INFO:
if key in key_map:
new_data.append(round(100*upload_data[key_map[key]],1))
else:
new_data.append(0)
except:
error_message = traceback.format_exc()
print("Error:", error_message)
return
# print(new_data)
# print(csv_data.loc[col-1])
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(CSV_DIR, index=False)
submission_repo.push_to_hub()
return "OK"
def get_baseline_df():
print("SUBMISSION_URL:", SUBMISSION_URL)
print("HF_TOKEN:", HF_TOKEN)
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Dev Avg", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
return df
def get_all_df():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN,
repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by="Dev Avg", ascending=False)
return df
def on_filter_model_size_method_change(selected_columns):
updated_data = get_all_df()
# columns:
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
# print("selected_columns",'|'.join(selected_columns))
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
# return filter_component # .value
return updated_data
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 MotionBench", elem_id="lvbench-tab-table", id=1):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
)
gr.Markdown(
TABLE_INTRODUCTION
)
# selection for column part:
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO,
value=AVG_INFO,
label="Evaluation Dimension",
interactive=True,
)
data_component = gr.components.Dataframe(
value=get_baseline_df(),
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
)
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group],
outputs=data_component)
# table 2
with gr.TabItem("📝 About", elem_id="lvbench-tab-table", id=2):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
# table 3
with gr.TabItem("🚀 Submit here! ", elem_id="lvbench-tab-table", id=3):
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="CogVLM2-Video"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder=""
)
with gr.Column():
LLM_type = gr.Dropdown(
choices=["LLaMA-3-8B", "Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "InternLM-7B", "Other"],
label="LLM type",
multiselect=False,
value="LLaMA-3-8B",
interactive=True,
)
LLM_name_textbox = gr.Textbox(
label="LLM model (for Other)",
placeholder="LLaMA-3-8B"
)
model_link = gr.Textbox(
label="Model Link", placeholder="https://cogvlm2-video.github.io/"
)
model_date = gr.Textbox(
label="Model Date", placeholder="2024/8/22"
)
with gr.Column():
input_file = gr.components.File(label="Click to Upload a json File", file_count="single", type='binary')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
input_file,
model_name_textbox,
revision_name_textbox,
model_link,
model_date,
LLM_type,
LLM_name_textbox,
],
outputs=submission_result,
)
def refresh_data():
value1 = get_baseline_df()
return value1
with gr.Row():
data_run = gr.Button("Refresh")
with gr.Row():
result_download = gr.Button("Download Leaderboard")
file_download = gr.File(label="download the csv of leaderborad.", visible=False)
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
result_download.click(download_csv, inputs=None, outputs=[file_download, file_download])
block.launch()
|