File size: 22,376 Bytes
ac305e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
from __future__ import annotations

import av
import torchaudio
import torch
import comfy.model_management
import folder_paths
import os
import io
import json
import random
import hashlib
import node_helpers
import logging
from comfy.cli_args import args
from comfy.comfy_types import FileLocator

class EmptyLatentAudio:
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}),
                             "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
                             }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

    CATEGORY = "latent/audio"

    def generate(self, seconds, batch_size):
        length = round((seconds * 44100 / 2048) / 2) * 2
        latent = torch.zeros([batch_size, 64, length], device=self.device)
        return ({"samples":latent, "type": "audio"}, )

class ConditioningStableAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}),
                             "seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")

    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, positive, negative, seconds_start, seconds_total):
        positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total})
        negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total})
        return (positive, negative)

class VAEEncodeAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/audio"

    def encode(self, vae, audio):
        sample_rate = audio["sample_rate"]
        if 44100 != sample_rate:
            waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
        else:
            waveform = audio["waveform"]

        t = vae.encode(waveform.movedim(1, -1))
        return ({"samples":t}, )

class VAEDecodeAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("AUDIO",)
    FUNCTION = "decode"

    CATEGORY = "latent/audio"

    def decode(self, vae, samples):
        audio = vae.decode(samples["samples"]).movedim(-1, 1)
        std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
        std[std < 1.0] = 1.0
        audio /= std
        return ({"waveform": audio, "sample_rate": 44100}, )


def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"):

    filename_prefix += self.prefix_append
    full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
    results: list[FileLocator] = []

    # Prepare metadata dictionary
    metadata = {}
    if not args.disable_metadata:
        if prompt is not None:
            metadata["prompt"] = json.dumps(prompt)
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

    # Opus supported sample rates
    OPUS_RATES = [8000, 12000, 16000, 24000, 48000]

    for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
        filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
        file = f"{filename_with_batch_num}_{counter:05}_.{format}"
        output_path = os.path.join(full_output_folder, file)

        # Use original sample rate initially
        sample_rate = audio["sample_rate"]

        # Handle Opus sample rate requirements
        if format == "opus":
            if sample_rate > 48000:
                sample_rate = 48000
            elif sample_rate not in OPUS_RATES:
                # Find the next highest supported rate
                for rate in sorted(OPUS_RATES):
                    if rate > sample_rate:
                        sample_rate = rate
                        break
                if sample_rate not in OPUS_RATES:  # Fallback if still not supported
                    sample_rate = 48000

            # Resample if necessary
            if sample_rate != audio["sample_rate"]:
                waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)

        # Create output with specified format
        output_buffer = io.BytesIO()
        output_container = av.open(output_buffer, mode='w', format=format)

        # Set metadata on the container
        for key, value in metadata.items():
            output_container.metadata[key] = value

        # Set up the output stream with appropriate properties
        if format == "opus":
            out_stream = output_container.add_stream("libopus", rate=sample_rate)
            if quality == "64k":
                out_stream.bit_rate = 64000
            elif quality == "96k":
                out_stream.bit_rate = 96000
            elif quality == "128k":
                out_stream.bit_rate = 128000
            elif quality == "192k":
                out_stream.bit_rate = 192000
            elif quality == "320k":
                out_stream.bit_rate = 320000
        elif format == "mp3":
            out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
            if quality == "V0":
                #TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
                out_stream.codec_context.qscale = 1
            elif quality == "128k":
                out_stream.bit_rate = 128000
            elif quality == "320k":
                out_stream.bit_rate = 320000
        else: #format == "flac":
            out_stream = output_container.add_stream("flac", rate=sample_rate)

        frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[0] == 1 else 'stereo')
        frame.sample_rate = sample_rate
        frame.pts = 0
        output_container.mux(out_stream.encode(frame))

        # Flush encoder
        output_container.mux(out_stream.encode(None))

        # Close containers
        output_container.close()

        # Write the output to file
        output_buffer.seek(0)
        with open(output_path, 'wb') as f:
            f.write(output_buffer.getbuffer())

        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": self.type
        })
        counter += 1

    return { "ui": { "audio": results } }

class SaveAudio:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ),
                            "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
                            },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_flac"

    OUTPUT_NODE = True

    CATEGORY = "audio"

    def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None):
        return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo)

class SaveAudioMP3:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ),
                            "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
                            "quality": (["V0", "128k", "320k"], {"default": "V0"}),
                            },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_mp3"

    OUTPUT_NODE = True

    CATEGORY = "audio"

    def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"):
        return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality)

class SaveAudioOpus:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ),
                            "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
                            "quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}),
                            },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_opus"

    OUTPUT_NODE = True

    CATEGORY = "audio"

    def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"):
        return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality)

class PreviewAudio(SaveAudio):
    def __init__(self):
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"audio": ("AUDIO", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
    """Convert audio to float 32 bits PCM format."""
    if wav.dtype.is_floating_point:
        return wav
    elif wav.dtype == torch.int16:
        return wav.float() / (2 ** 15)
    elif wav.dtype == torch.int32:
        return wav.float() / (2 ** 31)
    raise ValueError(f"Unsupported wav dtype: {wav.dtype}")

def load(filepath: str) -> tuple[torch.Tensor, int]:
    with av.open(filepath) as af:
        if not af.streams.audio:
            raise ValueError("No audio stream found in the file.")

        stream = af.streams.audio[0]
        sr = stream.codec_context.sample_rate
        n_channels = stream.channels

        frames = []
        length = 0
        for frame in af.decode(streams=stream.index):
            buf = torch.from_numpy(frame.to_ndarray())
            if buf.shape[0] != n_channels:
                buf = buf.view(-1, n_channels).t()

            frames.append(buf)
            length += buf.shape[1]

        if not frames:
            raise ValueError("No audio frames decoded.")

        wav = torch.cat(frames, dim=1)
        wav = f32_pcm(wav)
        return wav, sr

class LoadAudio:
    @classmethod
    def INPUT_TYPES(s):
        input_dir = folder_paths.get_input_directory()
        files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"])
        return {"required": {"audio": (sorted(files), {"audio_upload": True})}}

    CATEGORY = "audio"

    RETURN_TYPES = ("AUDIO", )
    FUNCTION = "load"

    def load(self, audio):
        audio_path = folder_paths.get_annotated_filepath(audio)
        waveform, sample_rate = load(audio_path)
        audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
        return (audio, )

    @classmethod
    def IS_CHANGED(s, audio):
        image_path = folder_paths.get_annotated_filepath(audio)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, audio):
        if not folder_paths.exists_annotated_filepath(audio):
            return "Invalid audio file: {}".format(audio)
        return True

class RecordAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"audio": ("AUDIO_RECORD", {})}}

    CATEGORY = "audio"

    RETURN_TYPES = ("AUDIO", )
    FUNCTION = "load"

    def load(self, audio):
        audio_path = folder_paths.get_annotated_filepath(audio)

        waveform, sample_rate = torchaudio.load(audio_path)
        audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
        return (audio, )


class TrimAudioDuration:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "audio": ("AUDIO",),
                "start_index": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Start time in seconds, can be negative to count from the end (supports sub-seconds)."}),
                "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "step": 0.01, "tooltip": "Duration in seconds"}),
            },
        }

    FUNCTION = "trim"
    RETURN_TYPES = ("AUDIO",)
    CATEGORY = "audio"
    DESCRIPTION = "Trim audio tensor into chosen time range."

    def trim(self, audio, start_index, duration):
        waveform = audio["waveform"]
        sample_rate = audio["sample_rate"]
        audio_length = waveform.shape[-1]

        if start_index < 0:
            start_frame = audio_length + int(round(start_index * sample_rate))
        else:
            start_frame = int(round(start_index * sample_rate))
        start_frame = max(0, min(start_frame, audio_length - 1))

        end_frame = start_frame + int(round(duration * sample_rate))
        end_frame = max(0, min(end_frame, audio_length))

        if start_frame >= end_frame:
            raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.")

        return ({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate},)


class SplitAudioChannels:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "audio": ("AUDIO",),
        }}

    RETURN_TYPES = ("AUDIO", "AUDIO")
    RETURN_NAMES = ("left", "right")
    FUNCTION = "separate"
    CATEGORY = "audio"
    DESCRIPTION = "Separates the audio into left and right channels."

    def separate(self, audio):
        waveform = audio["waveform"]
        sample_rate = audio["sample_rate"]

        if waveform.shape[1] != 2:
            raise ValueError("AudioSplit: Input audio has only one channel.")

        left_channel = waveform[..., 0:1, :]
        right_channel = waveform[..., 1:2, :]

        return ({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate})


def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2):
    if sample_rate_1 != sample_rate_2:
        if sample_rate_1 > sample_rate_2:
            waveform_2 = torchaudio.functional.resample(waveform_2, sample_rate_2, sample_rate_1)
            output_sample_rate = sample_rate_1
            logging.info(f"Resampling audio2 from {sample_rate_2}Hz to {sample_rate_1}Hz for merging.")
        else:
            waveform_1 = torchaudio.functional.resample(waveform_1, sample_rate_1, sample_rate_2)
            output_sample_rate = sample_rate_2
            logging.info(f"Resampling audio1 from {sample_rate_1}Hz to {sample_rate_2}Hz for merging.")
    else:
        output_sample_rate = sample_rate_1
    return waveform_1, waveform_2, output_sample_rate


class AudioConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "audio1": ("AUDIO",),
            "audio2": ("AUDIO",),
            "direction": (['after', 'before'], {"default": 'after', "tooltip": "Whether to append audio2 after or before audio1."}),
        }}

    RETURN_TYPES = ("AUDIO",)
    FUNCTION = "concat"
    CATEGORY = "audio"
    DESCRIPTION = "Concatenates the audio1 to audio2 in the specified direction."

    def concat(self, audio1, audio2, direction):
        waveform_1 = audio1["waveform"]
        waveform_2 = audio2["waveform"]
        sample_rate_1 = audio1["sample_rate"]
        sample_rate_2 = audio2["sample_rate"]

        if waveform_1.shape[1] == 1:
            waveform_1 = waveform_1.repeat(1, 2, 1)
            logging.info("AudioConcat: Converted mono audio1 to stereo by duplicating the channel.")
        if waveform_2.shape[1] == 1:
            waveform_2 = waveform_2.repeat(1, 2, 1)
            logging.info("AudioConcat: Converted mono audio2 to stereo by duplicating the channel.")

        waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2)

        if direction == 'after':
            concatenated_audio = torch.cat((waveform_1, waveform_2), dim=2)
        elif direction == 'before':
            concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2)

        return ({"waveform": concatenated_audio, "sample_rate": output_sample_rate},)


class AudioMerge:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "audio1": ("AUDIO",),
                "audio2": ("AUDIO",),
                "merge_method": (["add", "mean", "subtract", "multiply"], {"tooltip": "The method used to combine the audio waveforms."}),
            },
        }

    FUNCTION = "merge"
    RETURN_TYPES = ("AUDIO",)
    CATEGORY = "audio"
    DESCRIPTION = "Combine two audio tracks by overlaying their waveforms."

    def merge(self, audio1, audio2, merge_method):
        waveform_1 = audio1["waveform"]
        waveform_2 = audio2["waveform"]
        sample_rate_1 = audio1["sample_rate"]
        sample_rate_2 = audio2["sample_rate"]

        waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2)

        length_1 = waveform_1.shape[-1]
        length_2 = waveform_2.shape[-1]

        if length_2 > length_1:
            logging.info(f"AudioMerge: Trimming audio2 from {length_2} to {length_1} samples to match audio1 length.")
            waveform_2 = waveform_2[..., :length_1]
        elif length_2 < length_1:
            logging.info(f"AudioMerge: Padding audio2 from {length_2} to {length_1} samples to match audio1 length.")
            pad_shape = list(waveform_2.shape)
            pad_shape[-1] = length_1 - length_2
            pad_tensor = torch.zeros(pad_shape, dtype=waveform_2.dtype, device=waveform_2.device)
            waveform_2 = torch.cat((waveform_2, pad_tensor), dim=-1)

        if merge_method == "add":
            waveform = waveform_1 + waveform_2
        elif merge_method == "subtract":
            waveform = waveform_1 - waveform_2
        elif merge_method == "multiply":
            waveform = waveform_1 * waveform_2
        elif merge_method == "mean":
            waveform = (waveform_1 + waveform_2) / 2

        max_val = waveform.abs().max()
        if max_val > 1.0:
            waveform = waveform / max_val

        return ({"waveform": waveform, "sample_rate": output_sample_rate},)


class AudioAdjustVolume:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "audio": ("AUDIO",),
            "volume": ("INT", {"default": 1.0, "min": -100, "max": 100, "tooltip": "Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc"}),
        }}

    RETURN_TYPES = ("AUDIO",)
    FUNCTION = "adjust_volume"
    CATEGORY = "audio"

    def adjust_volume(self, audio, volume):
        if volume == 0:
            return (audio,)
        waveform = audio["waveform"]
        sample_rate = audio["sample_rate"]

        gain = 10 ** (volume / 20)
        waveform = waveform * gain

        return ({"waveform": waveform, "sample_rate": sample_rate},)


class EmptyAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Duration of the empty audio clip in seconds"}),
            "sample_rate": ("INT", {"default": 44100, "tooltip": "Sample rate of the empty audio clip."}),
            "channels": ("INT", {"default": 2, "min": 1, "max": 2, "tooltip": "Number of audio channels (1 for mono, 2 for stereo)."}),
        }}

    RETURN_TYPES = ("AUDIO",)
    FUNCTION = "create_empty_audio"
    CATEGORY = "audio"

    def create_empty_audio(self, duration, sample_rate, channels):
        num_samples = int(round(duration * sample_rate))
        waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32)
        return ({"waveform": waveform, "sample_rate": sample_rate},)


NODE_CLASS_MAPPINGS = {
    "EmptyLatentAudio": EmptyLatentAudio,
    "VAEEncodeAudio": VAEEncodeAudio,
    "VAEDecodeAudio": VAEDecodeAudio,
    "SaveAudio": SaveAudio,
    "SaveAudioMP3": SaveAudioMP3,
    "SaveAudioOpus": SaveAudioOpus,
    "LoadAudio": LoadAudio,
    "PreviewAudio": PreviewAudio,
    "ConditioningStableAudio": ConditioningStableAudio,
    "RecordAudio": RecordAudio,
    "TrimAudioDuration": TrimAudioDuration,
    "SplitAudioChannels": SplitAudioChannels,
    "AudioConcat": AudioConcat,
    "AudioMerge": AudioMerge,
    "AudioAdjustVolume": AudioAdjustVolume,
    "EmptyAudio": EmptyAudio,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "EmptyLatentAudio": "Empty Latent Audio",
    "VAEEncodeAudio": "VAE Encode Audio",
    "VAEDecodeAudio": "VAE Decode Audio",
    "PreviewAudio": "Preview Audio",
    "LoadAudio": "Load Audio",
    "SaveAudio": "Save Audio (FLAC)",
    "SaveAudioMP3": "Save Audio (MP3)",
    "SaveAudioOpus": "Save Audio (Opus)",
    "RecordAudio": "Record Audio",
    "TrimAudioDuration": "Trim Audio Duration",
    "SplitAudioChannels": "Split Audio Channels",
    "AudioConcat": "Audio Concat",
    "AudioMerge": "Audio Merge",
    "AudioAdjustVolume": "Audio Adjust Volume",
    "EmptyAudio": "Empty Audio",
}