File size: 10,300 Bytes
ac305e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8573fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
ac305e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import sys
sys.path.insert(0, "ComfyUI")
import os
import torch
import gc
import gradio as gr
from wan22_style import VideoProcessor
from huggingface_hub import hf_hub_download
import cv2
import shutil
import os


def convert_video_for_gradio(video_path):
    """
    Convert video to web-compatible format for Gradio display.
    This fixes the 'video not playable' issue with OpenCV-generated videos.
    """
    if video_path is None:
        return None
    
    try:
        
        # Create output in a Gradio-friendly location
        output_dir = "video"
        os.makedirs(output_dir, exist_ok=True)
        base_name = os.path.splitext(os.path.basename(video_path))[0]
        converted_path = os.path.join(output_dir, f"{base_name}_gradio_compatible.mp4")
        
        # Read the original video
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            print(f"Could not open video: {video_path}")
            return video_path  # Return original if can't process
        
        # Get video properties
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        
        # Try different codecs in order of preference
        codecs_to_try = ['mp4v', 'XVID', 'MJPG', 'X264']
        out = None
        
        for codec in codecs_to_try:
            try:
                fourcc = cv2.VideoWriter_fourcc(*codec)
                out = cv2.VideoWriter(converted_path, fourcc, fps, (width, height))
                if out.isOpened():
                    print(f"Using codec: {codec}")
                    break
                else:
                    out.release()
                    out = None
            except:
                continue
        
        if out is None or not out.isOpened():
            print("No suitable codec found, copying original file")
            shutil.copy2(video_path, converted_path)
            return converted_path
        
        # Read and write frames
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            out.write(frame)
        
        # Clean up
        cap.release()
        out.release()
        
        print(f"Video converted for Gradio: {converted_path}")
        return converted_path
        
    except Exception as e:
        print(f"Error converting video: {e}")
        # Fallback: just copy the original file
        try:
            output_dir = "video"
            os.makedirs(output_dir, exist_ok=True)
            base_name = os.path.splitext(os.path.basename(video_path))[0]
            fallback_path = os.path.join(output_dir, f"{base_name}_fallback.mp4")
            shutil.copy2(video_path, fallback_path)
            return fallback_path
        except:
            return video_path  # Return original if all else fails

def video_output_wrapper(func):
    """
    Wrapper function that automatically converts video outputs to Gradio-compatible format.
    Use this to wrap any function that returns a video path.
    """
    def wrapper(*args, **kwargs):
        # Call the original function
        result = func(*args, **kwargs)
        
        # If result is a video path, convert it for Gradio
        if result is not None and isinstance(result, str) and result.endswith(('.mp4', '.avi', '.mov', '.mkv')):
            print(f"Converting output video for Gradio: {result}")
            converted_path = convert_video_for_gradio(result)
            return converted_path
        
        return result
    
    return wrapper

#@video_output_wrapper
#def generate_image(*args, **kwargs):
#    """
#    Example function that would return a video path.
#    Replace this with your actual video processing function.
#    """
#    # This is just a placeholder - replace with your actual processing
#    return "video/processed_rgbfast.mp4"
video_processor = VideoProcessor()

@video_output_wrapper
def process_video_wrapper(structure_video, prompt_video, prompt_negative, structure_option, prompt_style, num_frames, fps, seed):
    result = video_processor._process_single_video(
        video_file_path=structure_video,
        output_prefix="video/gradio_output",
        positive_prompt=prompt_video,
        negative_prompt=prompt_negative,
        preprocess_option=structure_option,
        flux_positive_prompt=prompt_style,
        num_frames=int(num_frames),
        fps=int(fps),
        seed=int(seed)
    )
    return result


if __name__ == "__main__":

    #hf_hub_download(repo_id="Comfy-Org/Lumina_Image_2.0_Repackaged", filename="split_files/vae/ae.safetensors",local_dir="temp")
    #os.system("mv temp/split_files/vae/ae.safetensors ComfyUI/models/vae/ae.safetensors")
    #hf_hub_download(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/vae/wan_2.1_vae.safetensors",local_dir="temp")
    #os.system("mv temp/split_files/vae/wan_2.1_vae.safetensors ComfyUI/models/vae/wan_2.1_vae.safetensors")
    #hf_hub_download(repo_id="openai/clip-vit-large-patch14", filename="model.safetensors",local_dir="temp")
    #os.system("mv temp/model.safetensors ComfyUI/models/clip/clip-vit-large-patch14.safetensors")
    #hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp8_e4m3fn_scaled.safetensors",local_dir="temp")
    #os.system("mv temp/t5xxl_fp8_e4m3fn_scaled.safetensors ComfyUI/models/clip/t5xxl_fp8_e4m3fn_scaled.safetensors")
    #hf_hub_download(repo_id="QuantStack/Wan2.2-Fun-A14B-Control-GGUF", filename="HighNoise/Wan2.2-Fun-A14B-Control_HighNoise-Q8_0.gguf",local_dir="temp")
    #os.system("mv temp/HighNoise/Wan2.2-Fun-A14B-Control_HighNoise-Q8_0.gguf ComfyUI/models/unet/Wan2.2-Fun-A14B-Control_HighNoise-Q8_0.gguf")
    #hf_hub_download(repo_id="QuantStack/Wan2.2-Fun-A14B-Control-GGUF", filename="LowNoise/Wan2.2-Fun-A14B-Control_LowNoise-Q8_0.gguf",local_dir="temp")
    #os.system("mv temp/LowNoise/Wan2.2-Fun-A14B-Control_LowNoise-Q8_0.gguf ComfyUI/models/unet/Wan2.2-Fun-A14B-Control_LowNoise-Q8_0.gguf")
    #hf_hub_download(repo_id="QuantStack/FLUX.1-Kontext-dev-GGUF", filename="flux1-kontext-dev-Q8_0.gguf",local_dir="temp")
    #os.system("mv temp/flux1-kontext-dev-Q8_0.gguf ComfyUI/models/unet/flux1-kontext-dev-Q8_0.gguf")
    
    # Start your Gradio app
    with gr.Blocks() as app:
        # Add a title
        gr.Markdown("# Video Style Shaping with Flux and WAN2.2")
        gr.Markdown("## Click the convert button if getting the not playable error")

        with gr.Row():
            with gr.Column():
                # Add an input
                prompt_style = gr.Textbox(label="Style Prompt for Flux", placeholder="Enter your prompt here...")
                prompt_video = gr.Textbox(label="Content Prompt for WAN Video", placeholder="Enter your prompt here...")
                # Add a `Row` to include the groups side by side 
                with gr.Row():
                    # First group includes structure image and depth strength
                    with gr.Group():
                        structure_video = gr.Video(label="Structure Video (quality: 720 x 1280, decent quality: 480 x 832)")
                        convert_btn = gr.Button("Convert Video for Gradio", size="sm")
                        structure_option = gr.Radio(label="Preprocessing Option", choices=["Intensity", "Canny", "None"], value="Intensity")
                
                # Advanced Settings Section (collapsible)
                with gr.Accordion("⚙️ Advanced Settings", open=False):
                    with gr.Row():
                        with gr.Column():
                            # Video generation parameters
                            num_frames = gr.Slider(
                                label="Number of Frames", 
                                minimum=17, 
                                maximum=121, 
                                value=81, 
                                step=1,
                                info="Number of frames to generate"
                            )
                            fps = gr.Slider(
                                label="FPS", 
                                minimum=8, 
                                maximum=30, 
                                value=16, 
                                step=1,
                                info="Frames per second"
                            )
                            seed = gr.Number(
                                label="Seed", 
                                value=-1, 
                                precision=0,
                                info="Random seed (-1 for random)"
                            )
                            prompt_negative = gr.Textbox(
                                label="Negative Prompt for WAN Video", 
                                value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,CG, game, cartoon, anime, render, 渲染,游戏,卡通",
                                lines=4
                            )
                
                # The generate button
                generate_btn = gr.Button("Generate")
            
            with gr.Column():
                # The output video
                output_video = gr.Video(label="Generated Video")

            # Convert video button (manual only to avoid infinite loops)
            convert_btn.click(
                fn=convert_video_for_gradio,
                inputs=[structure_video],
                outputs=[structure_video]
            )

            # When clicking the button, it will trigger the `generate_image` function, with the respective inputs
            # and the output an image
            generate_btn.click(
                fn=process_video_wrapper,
                inputs=[
                    structure_video,
                    prompt_video, 
                    prompt_negative,
                    structure_option,
                    prompt_style,
                    num_frames,
                    fps,
                    seed,
                ],
                outputs=[output_video]
            )
        app.launch(share=True)