Spaces:
Sleeping
Sleeping
| import os | |
| import random | |
| import pdb | |
| import sys | |
| import argparse | |
| sys.path.insert(0, "ComfyUI") | |
| from typing import Sequence, Mapping, Any, Union | |
| from comfy.model_management import load_models_gpu, free_memory, unload_all_models | |
| import torch | |
| import gc | |
| import time | |
| import cv2 | |
| from PIL import Image | |
| import numpy as np | |
| import glob | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| """Returns the value at the given index of a sequence or mapping. | |
| If the object is a sequence (like list or string), returns the value at the given index. | |
| If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
| Some return a dictionary, in these cases, we look for the "results" key | |
| Args: | |
| obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
| index (int): The index of the value to retrieve. | |
| Returns: | |
| Any: The value at the given index. | |
| Raises: | |
| IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
| """ | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| def find_path(name: str, path: str = None) -> str: | |
| """ | |
| Recursively looks at parent folders starting from the given path until it finds the given name. | |
| Returns the path as a Path object if found, or None otherwise. | |
| """ | |
| # If no path is given, use the current working directorty | |
| if path is None: | |
| path = os.getcwd() | |
| # Check if the current directory contains the name | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} found: {path_name}") | |
| return path_name | |
| # Get the parent directory | |
| parent_directory = os.path.dirname(path) | |
| # If the parent directory is the same as the current directory, we've reached the root and stop the search | |
| if parent_directory == path: | |
| return None | |
| # Recursively call the function with the parent directory | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| """ | |
| Add 'ComfyUI' to the sys.path | |
| """ | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"'{comfyui_path}' added to sys.path") | |
| def add_extra_model_paths() -> None: | |
| """ | |
| Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
| """ | |
| try: | |
| from main import load_extra_path_config | |
| except ImportError: | |
| print( | |
| "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
| ) | |
| from utils.extra_config import load_extra_path_config | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Could not find the extra_model_paths config file.") | |
| def import_custom_nodes() -> None: | |
| """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
| This function sets up a new asyncio event loop, initializes the PromptServer, | |
| creates a PromptQueue, and initializes the custom nodes. | |
| """ | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| sys.path.insert(0, find_path("ComfyUI")) | |
| import server | |
| # Creating a new event loop and setting it as the default loop | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| # Creating an instance of PromptServer with the loop | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| # Initializing custom nodes | |
| asyncio.run(init_extra_nodes()) | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| import_custom_nodes() | |
| from nodes import NODE_CLASS_MAPPINGS | |
| class VideoProcessor: | |
| """ | |
| Efficient video processor that loads models once and reuses them for multiple inputs. | |
| """ | |
| def __init__(self): | |
| """Initialize the processor with lazy loading.""" | |
| self.models_loaded = False | |
| self.models = {} | |
| self.loaded_models = set() # Track which models are currently loaded | |
| self._initialization_lock = False # Prevent duplicate initialization | |
| # Don't load models immediately - load them when needed | |
| #def _load_models(self): | |
| # """Load all required models once and store them for reuse.""" | |
| # print("Loading models...") | |
| # | |
| # # Load dual CLIP for Flux model | |
| # dual_clip_loader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
| # self.models['flux_clip'] = dual_clip_loader.load_clip( | |
| # clip_name1="t5xxl_fp8_e4m3fn_scaled.safetensors", | |
| # clip_name2="clip-vit-large-patch14.safetensors", | |
| # type="flux", | |
| # device="default" | |
| # ) | |
| # # Load CLIP for WAN model | |
| # clip_loader = NODE_CLASS_MAPPINGS["CLIPLoader"]() | |
| # self.models['wan_clip'] = clip_loader.load_clip( | |
| # clip_name="umt5_xxl_fp8_e4m3fn_scaled.safetensors", | |
| # type="wan", | |
| # device="default" | |
| # ) | |
| # # Load UNet models for different purposes | |
| # unet_loader_gguf = NODE_CLASS_MAPPINGS["UnetLoaderGGUF"]() | |
| # | |
| # # Flux model for initial image generation | |
| # self.models['flux_unet'] = unet_loader_gguf.load_unet(unet_name="flux1-kontext-dev-Q8_0.gguf") | |
| # | |
| # # WAN models for video generation | |
| # #self.models['wan_unet_low_noise'] = unet_loader_gguf.load_unet(unet_name="Wan2.2-Fun-A14B-Control_LowNoise-Q5_K_M.gguf") | |
| # #self.models['wan_unet_high_noise'] = unet_loader_gguf.load_unet(unet_name="Wan2.2-Fun-A14B-Control_HighNoise-Q5_K_M.gguf") | |
| # #self.models['wan_unet_5b'] = unet_loader_gguf.load_unet(unet_name="Wan2.2-Fun-5B-Control-Q8_0.gguf") | |
| # self.models['wan_unet_high_noise'] = unet_loader_gguf.load_unet(unet_name="Wan2.2-Fun-A14B-Control_HighNoise-Q8_0.gguf") | |
| # d | |
| # self.models['wan_unet_low_noise'] = unet_loader_gguf.load_unet(unet_name="Wan2.2-Fun-A14B-Control_LowNoise-Q8_0.gguf") | |
| # # Load VAE models | |
| # vae_loader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
| # self.models['flux_vae'] = vae_loader.load_vae(vae_name="ae.safetensors") | |
| # self.models['wan_vae'] = vae_loader.load_vae(vae_name="wan_2.1_vae.safetensors") | |
| # #self.models['wan_vae_2_2'] = vae_loader.load_vae(vae_name="wan2.2_vae.safetensors") # for 5B model | |
| # | |
| # # Load LoRA models for WAN | |
| # lora_loader_model_only = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
| # self.models['wan_model_with_low_noise_lora'] = lora_loader_model_only.load_lora_model_only( | |
| # lora_name="wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors", | |
| # strength_model=1, | |
| # model=get_value_at_index(self.models['wan_unet_low_noise'], 0) | |
| # ) | |
| # self.models['wan_model_with_high_noise_lora'] = lora_loader_model_only.load_lora_model_only( | |
| # lora_name="wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors", | |
| # strength_model=1, | |
| # model=get_value_at_index(self.models['wan_unet_high_noise'], 0) | |
| # ) | |
| # | |
| # # Load CLIP text encoder (reusable for all processing) | |
| # self.models['clip_text_encode'] = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
| # | |
| # # Load other reusable nodes | |
| # self.models['load_video'] = NODE_CLASS_MAPPINGS["LoadVideo"]() | |
| # self.models['load_video_frame'] = NODE_CLASS_MAPPINGS["LoadVideoFrame"]() | |
| # self.models['flux_kontext_image_scale'] = NODE_CLASS_MAPPINGS["FluxKontextImageScale"]() | |
| # self.models['vae_encode'] = NODE_CLASS_MAPPINGS["VAEEncode"]() | |
| # self.models['get_image_size'] = NODE_CLASS_MAPPINGS["GetImageSize"]() | |
| # self.models['model_sampling_flux'] = NODE_CLASS_MAPPINGS["ModelSamplingFlux"]() | |
| # self.models['flux_guidance'] = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| # self.models['reference_latent_node'] = NODE_CLASS_MAPPINGS["ReferenceLatent"]() | |
| # self.models['basic_guider'] = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
| # self.models['basic_scheduler'] = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
| # self.models['empty_sd3_latent_image'] = NODE_CLASS_MAPPINGS["EmptySD3LatentImage"]() | |
| # self.models['random_noise'] = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
| # self.models['k_sampler_select'] = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
| # self.models['sampler_custom_advanced'] = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
| # self.models['vae_decode'] = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
| # self.models['get_video_components'] = NODE_CLASS_MAPPINGS["GetVideoComponents"]() | |
| # self.models['intensity_depth_estimation'] = NODE_CLASS_MAPPINGS["IntensityDepthEstimation"]() | |
| # self.models['canny_opencv'] = NODE_CLASS_MAPPINGS["CannyOpenCV"]() | |
| # self.models['model_sampling_sd3'] = NODE_CLASS_MAPPINGS["ModelSamplingSD3"]() | |
| # self.models['wan_22_fun_control_to_video'] = NODE_CLASS_MAPPINGS["Wan22FunControlToVideo"]() | |
| # self.models['k_sampler_advanced'] = NODE_CLASS_MAPPINGS["KSamplerAdvanced"]() | |
| # self.models['create_video'] = NODE_CLASS_MAPPINGS["CreateVideo"]() | |
| # | |
| # self.models_loaded = True | |
| # print("Models loaded successfully!") | |
| def _load_flux_models(self): | |
| """Load only Flux models when needed.""" | |
| if 'flux_clip' not in self.loaded_models: | |
| print("Loading Flux CLIP models...") | |
| dual_clip_loader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
| self.models['flux_clip'] = dual_clip_loader.load_clip( | |
| clip_name1="t5xxl_fp8_e4m3fn_scaled.safetensors", | |
| clip_name2="clip-vit-large-patch14.safetensors", | |
| type="flux", | |
| device="default" | |
| ) | |
| self.loaded_models.add('flux_clip') | |
| if 'flux_unet' not in self.loaded_models: | |
| print("Loading Flux UNet model...") | |
| unet_loader_gguf = NODE_CLASS_MAPPINGS["UnetLoaderGGUF"]() | |
| self.models['flux_unet'] = unet_loader_gguf.load_unet(unet_name="flux1-kontext-dev-Q8_0.gguf") | |
| self.loaded_models.add('flux_unet') | |
| if 'flux_vae' not in self.loaded_models: | |
| print("Loading Flux VAE model...") | |
| vae_loader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
| self.models['flux_vae'] = vae_loader.load_vae(vae_name="ae.safetensors") | |
| self.loaded_models.add('flux_vae') | |
| # Load utility models needed for Flux processing | |
| self._load_utility_models() | |
| def _load_wan_models(self): | |
| """Load only WAN models when needed.""" | |
| if 'wan_clip' not in self.loaded_models: | |
| print("Loading WAN CLIP model...") | |
| clip_loader = NODE_CLASS_MAPPINGS["CLIPLoader"]() | |
| self.models['wan_clip'] = clip_loader.load_clip( | |
| clip_name="umt5_xxl_fp8_e4m3fn_scaled.safetensors", | |
| type="wan", | |
| device="default" | |
| ) | |
| self.loaded_models.add('wan_clip') | |
| if 'wan_vae' not in self.loaded_models: | |
| print("Loading WAN VAE model...") | |
| vae_loader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
| self.models['wan_vae'] = vae_loader.load_vae(vae_name="wan_2.1_vae.safetensors") | |
| self.loaded_models.add('wan_vae') | |
| def _load_wan_high_noise_model(self): | |
| """Load WAN high noise model when needed.""" | |
| if 'wan_unet_high_noise' not in self.loaded_models: | |
| print("Loading WAN high noise UNet model...") | |
| unet_loader_gguf = NODE_CLASS_MAPPINGS["UnetLoaderGGUF"]() | |
| self.models['wan_unet_high_noise'] = unet_loader_gguf.load_unet(unet_name="Wan2.2-Fun-A14B-Control_HighNoise-Q8_0.gguf") | |
| self.loaded_models.add('wan_unet_high_noise') | |
| if 'wan_model_with_high_noise_lora' not in self.loaded_models: | |
| print("Loading WAN high noise LoRA...") | |
| lora_loader_model_only = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
| self.models['wan_model_with_high_noise_lora'] = lora_loader_model_only.load_lora_model_only( | |
| lora_name="wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors", | |
| strength_model=1, | |
| model=get_value_at_index(self.models['wan_unet_high_noise'], 0) | |
| ) | |
| self.loaded_models.add('wan_model_with_high_noise_lora') | |
| def _load_wan_low_noise_model(self): | |
| """Load WAN low noise model when needed.""" | |
| if 'wan_unet_low_noise' not in self.loaded_models: | |
| print("Loading WAN low noise UNet model...") | |
| unet_loader_gguf = NODE_CLASS_MAPPINGS["UnetLoaderGGUF"]() | |
| self.models['wan_unet_low_noise'] = unet_loader_gguf.load_unet(unet_name="Wan2.2-Fun-A14B-Control_LowNoise-Q8_0.gguf") | |
| self.loaded_models.add('wan_unet_low_noise') | |
| if 'wan_model_with_low_noise_lora' not in self.loaded_models: | |
| print("Loading WAN low noise LoRA...") | |
| lora_loader_model_only = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
| self.models['wan_model_with_low_noise_lora'] = lora_loader_model_only.load_lora_model_only( | |
| lora_name="wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors", | |
| strength_model=1, | |
| model=get_value_at_index(self.models['wan_unet_low_noise'], 0) | |
| ) | |
| self.loaded_models.add('wan_model_with_low_noise_lora') | |
| def _load_utility_models(self): | |
| """Load utility models that are needed for processing.""" | |
| if 'utility_models' not in self.loaded_models: | |
| print("Loading utility models...") | |
| self.models['clip_text_encode'] = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
| self.models['load_video'] = NODE_CLASS_MAPPINGS["LoadVideo"]() | |
| self.models['load_video_frame'] = NODE_CLASS_MAPPINGS["LoadVideoFrame"]() | |
| self.models['flux_kontext_image_scale'] = NODE_CLASS_MAPPINGS["FluxKontextImageScale"]() | |
| self.models['vae_encode'] = NODE_CLASS_MAPPINGS["VAEEncode"]() | |
| self.models['get_image_size'] = NODE_CLASS_MAPPINGS["GetImageSize"]() | |
| self.models['model_sampling_flux'] = NODE_CLASS_MAPPINGS["ModelSamplingFlux"]() | |
| self.models['flux_guidance'] = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| self.models['reference_latent_node'] = NODE_CLASS_MAPPINGS["ReferenceLatent"]() | |
| self.models['basic_guider'] = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
| self.models['basic_scheduler'] = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
| self.models['empty_sd3_latent_image'] = NODE_CLASS_MAPPINGS["EmptySD3LatentImage"]() | |
| self.models['random_noise'] = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
| self.models['k_sampler_select'] = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
| self.models['sampler_custom_advanced'] = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
| self.models['vae_decode'] = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
| self.models['get_video_components'] = NODE_CLASS_MAPPINGS["GetVideoComponents"]() | |
| self.models['intensity_depth_estimation'] = NODE_CLASS_MAPPINGS["IntensityDepthEstimation"]() | |
| self.models['canny_opencv'] = NODE_CLASS_MAPPINGS["CannyOpenCV"]() | |
| self.models['model_sampling_sd3'] = NODE_CLASS_MAPPINGS["ModelSamplingSD3"]() | |
| self.models['wan_22_fun_control_to_video'] = NODE_CLASS_MAPPINGS["Wan22FunControlToVideo"]() | |
| self.models['k_sampler_advanced'] = NODE_CLASS_MAPPINGS["KSamplerAdvanced"]() | |
| self.models['create_video'] = NODE_CLASS_MAPPINGS["CreateVideo"]() | |
| self.loaded_models.add('utility_models') | |
| #def process_video(self, video_file_path: str, output_prefix: str = "video", | |
| # positive_prompt: str = None, negative_prompt: str = None, | |
| # style_prompt: str = None, fps: int = 16, num_frames: int = 81, | |
| # seed: int = -1, preprocess_option: str = "Canny"): | |
| # """ | |
| # Process a single video file using lazy-loaded models. | |
| # | |
| # Args: | |
| # video_file_path: Path to the input video file | |
| # output_prefix: Prefix for the output video file | |
| # positive_prompt: Custom positive prompt (uses default if None) | |
| # negative_prompt: Custom negative prompt (uses default if None) | |
| # style_prompt: Style prompt that will be combined with positive_prompt (optional) | |
| # fps: Output video FPS (default: 16) | |
| # num_frames: Number of frames to generate (default: 81) | |
| # seed: Random seed for reproducible results (default: -1 for random) | |
| # preprocess_option: Preprocessing method for control (default: "Canny") | |
| # """ | |
| # # With lazy loading, models will be loaded on-demand during processing | |
| # | |
| # # Use default prompts if not provided | |
| # if positive_prompt is None: | |
| # positive_prompt = ("Turn it into a photorealistic picture as if it's from a movie. " | |
| # "Keep the original lane markers. A photorealistic video as if it's a clip from a movie. " | |
| # "A video of a quiet, empty urban street on a gloomy, raining day. " | |
| # "The road is wide and wet, with visible puddles and worn textures, " | |
| # "giving the impression of recent rain. Faint blue lane markings run down the center of the street. " | |
| # "On the right side, a row of low-rise brick apartment buildings with multiple windows " | |
| # "and external air conditioning units is visible. A line of tall, thin evergreen trees " | |
| # "is planted along the sidewalk beside street lamps. On the left side, a river or waterfront " | |
| # "area can be seen, lined with benches, trash bins, and small concrete barriers. " | |
| # "Beyond the water, a row of pale green trees fades into the misty, gray horizon. " | |
| # "The atmosphere feels damp and foggy, with reduced visibility and a muted color palette " | |
| # "dominated by grays and washed-out greens. The camera is fixed at street level, moving forward smoothly") | |
| # | |
| # # Combine style_prompt with main positive prompt if provided | |
| # if style_prompt: | |
| # positive_prompt = f"{positive_prompt}, {style_prompt}" | |
| # print(f"Combined prompt: {positive_prompt}") | |
| # | |
| # if negative_prompt is None: | |
| # negative_prompt = ("色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止," | |
| # "整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,CG, game, cartoon, anime, " | |
| # "render, 渲染,游戏,卡通") | |
| # | |
| # return self._process_single_video(video_file_path, output_prefix, positive_prompt, negative_prompt, | |
| # preprocess_option, None, num_frames, fps, seed) | |
| def _process_single_video(self, video_file_path: str, output_prefix: str, | |
| positive_prompt: str, negative_prompt: str, style_prompt: str, preprocess_option: str = "Intensity", | |
| num_frames: int = 81, fps: int = 16, seed: int = -1): | |
| """Internal method to process a single video with ComfyUI-style memory management.""" | |
| with torch.inference_mode(): | |
| # ============================================================================= | |
| # STEP 1: Load Flux Models and Encode Text Prompts | |
| # ============================================================================= | |
| # Load only Flux models for this step (lazy loading) | |
| self._load_flux_models() | |
| flux_models = [get_value_at_index(self.models['flux_unet'], 0)] | |
| load_models_gpu(flux_models) | |
| print("Flux models loaded for text encoding and image generation") | |
| # Encode prompts for Flux model | |
| positive_prompt_for_flux = f"{style_prompt}. {positive_prompt}" | |
| flux_positive_conditioning = self.models['clip_text_encode'].encode( | |
| text=positive_prompt_for_flux, | |
| clip=get_value_at_index(self.models['flux_clip'], 0) | |
| ) | |
| # Load WAN models for text encoding (needed early in the process) | |
| self._load_wan_models() | |
| # Encode prompts for WAN model (will be used later) | |
| wan_positive_conditioning = self.models['clip_text_encode'].encode( | |
| text=positive_prompt, | |
| clip=get_value_at_index(self.models['wan_clip'], 0) | |
| ) | |
| wan_negative_conditioning = self.models['clip_text_encode'].encode( | |
| text=negative_prompt, | |
| clip=get_value_at_index(self.models['wan_clip'], 0) | |
| ) | |
| # ============================================================================= | |
| # STEP 2: Load Video and Extract Frame | |
| # ============================================================================= | |
| # Load input video | |
| input_video = self.models['load_video'].EXECUTE_NORMALIZED(file=video_file_path) | |
| # ============================================================================= | |
| # STEP 3: Process Reference Image | |
| # ============================================================================= | |
| # Extract first frame as reference | |
| reference_frame = self.models['load_video_frame'].load_video_frame( | |
| frame_index=0, | |
| video=get_value_at_index(input_video, 0) | |
| ) | |
| # Scale the reference frame for Flux model | |
| scaled_reference = self.models['flux_kontext_image_scale'].scale( | |
| image=get_value_at_index(reference_frame, 0) | |
| ) | |
| # Encode reference image to latent space | |
| reference_latent = self.models['vae_encode'].encode( | |
| pixels=get_value_at_index(scaled_reference, 0), | |
| vae=get_value_at_index(self.models['flux_vae'], 0) | |
| ) | |
| # ============================================================================= | |
| # STEP 4: Generate Reference Image with Flux | |
| # ============================================================================= | |
| # Get image dimensions | |
| image_dimensions = self.models['get_image_size'].get_size( | |
| image=get_value_at_index(reference_frame, 0), | |
| unique_id=1883388692125059625 | |
| ) | |
| # Configure Flux model sampling | |
| flux_model = self.models['model_sampling_flux'].patch( | |
| max_shift=1.15, | |
| base_shift=0.5, | |
| width=get_value_at_index(image_dimensions, 0), | |
| height=get_value_at_index(image_dimensions, 1), | |
| model=get_value_at_index(self.models['flux_unet'], 0) | |
| ) | |
| # Add guidance to conditioning | |
| guided_conditioning = self.models['flux_guidance'].append( | |
| guidance=2.5, | |
| conditioning=get_value_at_index(flux_positive_conditioning, 0) | |
| ) | |
| # Create reference latent with conditioning | |
| reference_latent_with_conditioning = self.models['reference_latent_node'].append( | |
| conditioning=get_value_at_index(guided_conditioning, 0), | |
| latent=get_value_at_index(reference_latent, 0) | |
| ) | |
| # Set up sampling parameters | |
| guider = self.models['basic_guider'].get_guider( | |
| model=get_value_at_index(flux_model, 0), | |
| conditioning=get_value_at_index(reference_latent_with_conditioning, 0) | |
| ) | |
| sigmas = self.models['basic_scheduler'].get_sigmas( | |
| scheduler="simple", | |
| steps=28, | |
| denoise=1, | |
| model=get_value_at_index(self.models['flux_unet'], 0) | |
| ) | |
| # Generate empty latent image | |
| empty_latent = self.models['empty_sd3_latent_image'].generate( | |
| width=get_value_at_index(image_dimensions, 0), | |
| height=get_value_at_index(image_dimensions, 1), | |
| batch_size=get_value_at_index(image_dimensions, 2) | |
| ) | |
| # Generate random noise | |
| noise = self.models['random_noise'].get_noise(noise_seed=seed if seed != -1 else random.randint(1, 2**64)) | |
| # Select sampler | |
| sampler = self.models['k_sampler_select'].get_sampler(sampler_name="euler") | |
| # Sample the reference image | |
| sampled_latent = self.models['sampler_custom_advanced'].sample( | |
| noise=get_value_at_index(noise, 0), | |
| guider=get_value_at_index(guider, 0), | |
| sampler=get_value_at_index(sampler, 0), | |
| sigmas=get_value_at_index(sigmas, 0), | |
| latent_image=get_value_at_index(empty_latent, 0) | |
| ) | |
| # Decode to get final reference image | |
| reference_image = self.models['vae_decode'].decode( | |
| samples=get_value_at_index(sampled_latent, 0), | |
| vae=get_value_at_index(self.models['flux_vae'], 0) | |
| ) | |
| # Save intermediate results | |
| self._save_intermediate_results(output_prefix, { | |
| 'reference_image': reference_image, | |
| }) | |
| # ============================================================================= | |
| # STEP 5: Switch to WAN Models and Generate Video | |
| # ============================================================================= | |
| # Force unload ALL models and clear memory | |
| unload_all_models() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| print("All models unloaded, memory cleared") | |
| # Wait a moment for memory to be freed | |
| time.sleep(2) | |
| # Check memory usage | |
| if torch.cuda.is_available(): | |
| allocated = torch.cuda.memory_allocated() / 1024**3 | |
| cached = torch.cuda.memory_reserved() / 1024**3 | |
| print(f"Memory after cleanup - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB") | |
| # Load only the high noise model first (lazy loading) | |
| self._load_wan_models() # Load WAN CLIP and VAE first | |
| self._load_wan_high_noise_model() # Load high noise model | |
| wan_high_noise_model = [get_value_at_index(self.models['wan_model_with_high_noise_lora'], 0)] | |
| load_models_gpu(wan_high_noise_model) | |
| print("High noise WAN model loaded for first pass") | |
| # Get video components and estimate depth | |
| video_components = self.models['get_video_components'].EXECUTE_NORMALIZED( | |
| video=get_value_at_index(input_video, 0) | |
| ) | |
| if preprocess_option == "Intensity": | |
| # Estimate depth from video for control | |
| depth_map = self.models['intensity_depth_estimation'].estimate_depth( | |
| method="intensity", | |
| depth_range=1, | |
| normalize=True, | |
| blur_radius=1, | |
| image=get_value_at_index(video_components, 0) | |
| ) | |
| elif preprocess_option == "Canny": | |
| depth_map = self.models['canny_opencv'].detect_edges( | |
| image=get_value_at_index(video_components, 0), | |
| low_threshold=50, | |
| high_threshold=150, | |
| blur_kernel_size=5, | |
| l2_gradient=False | |
| ) | |
| else: | |
| depth_map = (get_value_at_index(video_components, 0),) | |
| # Get dimensions for video generation | |
| video_dimensions = self.models['get_image_size'].get_size( | |
| image=get_value_at_index(depth_map, 0), | |
| unique_id=10193800039993504008 | |
| ) | |
| # Configure WAN model for video generation (high noise model is already loaded) | |
| wan_model_high_noise = self.models['model_sampling_sd3'].patch( | |
| shift=8.000000000000002, | |
| model=get_value_at_index(self.models['wan_model_with_high_noise_lora'], 0) | |
| ) | |
| # Generate control video using WAN | |
| control_video = self.models['wan_22_fun_control_to_video'].EXECUTE_NORMALIZED( | |
| width=get_value_at_index(video_dimensions, 0), | |
| height=get_value_at_index(video_dimensions, 1), | |
| length=num_frames, | |
| batch_size=1, | |
| positive=get_value_at_index(wan_positive_conditioning, 0), | |
| negative=get_value_at_index(wan_negative_conditioning, 0), | |
| vae=get_value_at_index(self.models['wan_vae'], 0), | |
| ref_image=get_value_at_index(reference_image, 0), | |
| control_video=get_value_at_index(depth_map, 0) | |
| ) | |
| # ============================================================================= | |
| # STEP 6: First Sampling Pass with High Noise Model | |
| # ============================================================================= | |
| # First sampling pass with high noise model (already loaded) | |
| first_pass_result = self.models['k_sampler_advanced'].sample( | |
| add_noise="enable", | |
| noise_seed=seed if seed != -1 else random.randint(1, 2**64), | |
| steps=4, | |
| cfg=1, | |
| sampler_name="euler", | |
| scheduler="simple", | |
| start_at_step=0, | |
| end_at_step=2, | |
| return_with_leftover_noise="enable", | |
| model=get_value_at_index(wan_model_high_noise, 0), | |
| positive=get_value_at_index(control_video, 0), | |
| negative=get_value_at_index(control_video, 1), | |
| latent_image=get_value_at_index(control_video, 2) | |
| ) | |
| # ============================================================================= | |
| # STEP 7: Switch to Low Noise Model for Second Pass | |
| # ============================================================================= | |
| # Force unload high noise model and load low noise model | |
| unload_all_models() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| print("High noise model unloaded, loading low noise model...") | |
| # Wait for memory to be freed | |
| time.sleep(1) | |
| # Check memory usage | |
| if torch.cuda.is_available(): | |
| allocated = torch.cuda.memory_allocated() / 1024**3 | |
| cached = torch.cuda.memory_reserved() / 1024**3 | |
| print(f"Memory before loading low noise - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB") | |
| # Load low noise model (lazy loading) | |
| self._load_wan_low_noise_model() | |
| wan_low_noise_model = [get_value_at_index(self.models['wan_model_with_low_noise_lora'], 0)] | |
| load_models_gpu(wan_low_noise_model) | |
| print("Low noise WAN model loaded for second pass") | |
| # Configure low noise model | |
| wan_model_low_noise = self.models['model_sampling_sd3'].patch( | |
| shift=8.000000000000002, | |
| model=get_value_at_index(self.models['wan_model_with_low_noise_lora'], 0) | |
| ) | |
| # Second sampling pass with low noise model | |
| second_pass_result = self.models['k_sampler_advanced'].sample( | |
| add_noise="disable", | |
| noise_seed=seed if seed != -1 else random.randint(1, 2**64), | |
| steps=4, | |
| cfg=1, | |
| sampler_name="euler", | |
| scheduler="simple", | |
| start_at_step=2, | |
| end_at_step=4, | |
| return_with_leftover_noise="disable", | |
| model=get_value_at_index(wan_model_low_noise, 0), | |
| positive=get_value_at_index(control_video, 0), | |
| negative=get_value_at_index(control_video, 1), | |
| latent_image=get_value_at_index(first_pass_result, 0) | |
| ) | |
| # Decode final video | |
| final_video_latent = self.models['vae_decode'].decode( | |
| samples=get_value_at_index(second_pass_result, 0), | |
| vae=get_value_at_index(self.models['wan_vae'], 0) | |
| ) | |
| # ============================================================================= | |
| # STEP 7: Create and Save Final Video | |
| # ============================================================================= | |
| # Create video from frames | |
| final_video = self.models['create_video'].EXECUTE_NORMALIZED( | |
| fps=fps, | |
| images=get_value_at_index(final_video_latent, 0) | |
| ) | |
| # Save the video using Python | |
| video_data = get_value_at_index(final_video, 0) | |
| print(f"Final video data type: {type(video_data)}") | |
| # Debug breakpoint to inspect video object | |
| output_path = self._save_video_python(video_data, output_prefix) | |
| print(f"Video processing completed for: {video_file_path}") | |
| # ============================================================================= | |
| # STEP 8: Final Cleanup | |
| # ============================================================================= | |
| # Unload all models and cleanup | |
| free_memory(0, torch.device("cuda")) | |
| torch.cuda.empty_cache() | |
| print("All models unloaded and memory cleaned up") | |
| return output_path | |
| def _save_video_python(self, video_data, output_prefix: str, fps: int = 16): | |
| """ | |
| Save video using Python libraries (OpenCV with imageio fallback). | |
| Args: | |
| video_data: Video data from ComfyUI | |
| output_prefix: Output file prefix | |
| fps: Frames per second for the output video | |
| Returns: | |
| str: Path to saved video file, or None if failed | |
| """ | |
| print(f"Video data type: {type(video_data)}") | |
| # Create output directory | |
| output_dir = os.path.dirname(output_prefix) | |
| os.makedirs(output_dir, exist_ok=True) | |
| # Generate output filename | |
| output_filename = f"{os.path.basename(output_prefix)}.mp4" | |
| output_path = os.path.join(output_dir, output_filename) | |
| # Handle ComfyUI video objects | |
| if hasattr(video_data, 'get_dimensions'): | |
| # This is a ComfyUI video object | |
| width, height = video_data.get_dimensions() | |
| print(f"ComfyUI video dimensions: {width}x{height}") | |
| # Try to get video components | |
| try: | |
| if hasattr(video_data, 'get_components'): | |
| components = video_data.get_components() | |
| print(f"Got components: {type(components)}") | |
| if hasattr(components, 'images'): | |
| video_array = components.images | |
| print(f"Got video components, images shape: {video_array.shape}") | |
| print(f"Images type: {type(video_array)}") | |
| else: | |
| print("Video components don't have images attribute") | |
| print(f"Available attributes: {dir(components)}") | |
| return None | |
| else: | |
| print("Video object doesn't have get_components method") | |
| print(f"Available methods: {[m for m in dir(video_data) if not m.startswith('_')]}") | |
| return None | |
| except Exception as e: | |
| print(f"Error getting video components: {e}") | |
| import traceback | |
| traceback.print_exc() | |
| return None | |
| else: | |
| # Try to convert to numpy array if needed | |
| if hasattr(video_data, 'numpy'): | |
| video_array = video_data.numpy() | |
| else: | |
| video_array = video_data | |
| print(f"Video array shape: {video_array.shape}") | |
| print(f"Video array dtype: {video_array.dtype}") | |
| # Save video using OpenCV | |
| try: | |
| # Get video dimensions and frame count | |
| if video_array.ndim == 4: # [frames, height, width, channels] | |
| frames, height, width, channels = video_array.shape | |
| elif video_array.ndim == 5: # [batch, frames, height, width, channels] | |
| batch, frames, height, width, channels = video_array.shape | |
| video_array = video_array[0] # Take first batch | |
| else: | |
| raise ValueError(f"Unexpected video array shape: {video_array.shape}") | |
| # Set up video writer | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | |
| # Write frames | |
| video_array = video_array.numpy() | |
| for frame in video_array: | |
| out.write(cv2.cvtColor((frame*255).astype(np.uint8),cv2.COLOR_RGB2BGR)) | |
| out.release() | |
| print(f"Video saved successfully to: {output_path}") | |
| return output_path | |
| except Exception as e: | |
| print(f"Error saving video with OpenCV: {e}") | |
| def _save_intermediate_results(self, output_prefix: str, intermediates: dict): | |
| """Save intermediate results for debugging and analysis.""" | |
| # Create intermediates directory | |
| base_dir = os.path.dirname(output_prefix) | |
| intermediates_dir = os.path.join(base_dir, "intermediates") | |
| os.makedirs(intermediates_dir, exist_ok=True) | |
| # Extract base filename | |
| base_name = os.path.basename(output_prefix) | |
| for name, data in intermediates.items(): | |
| try: | |
| if name == 'reference_image': | |
| # Save Flux-generated reference image | |
| ref_data = get_value_at_index(data, 0) | |
| if hasattr(ref_data, 'numpy'): | |
| img_array = ref_data.numpy() | |
| if img_array.ndim == 4: | |
| img_array = img_array[0] | |
| img = Image.fromarray((img_array * 255).astype(np.uint8)) | |
| img.save(os.path.join(intermediates_dir, f"{base_name}_flux_reference.png")) | |
| print(f"Saved intermediate: {name}") | |
| except Exception as e: | |
| print(f"Failed to save intermediate {name}: {e}") | |
| continue | |
| def process_batch(self, video_files: list, output_prefixes: list = None, | |
| positive_prompts: list = None, negative_prompts: list = None, | |
| style_prompt: str = None, fps: int = 16, num_frames: int = 81, | |
| seed: int = -1, preprocess_option: str = "Canny"): | |
| """ | |
| Process multiple video files efficiently using lazy-loaded models. | |
| Args: | |
| video_files: List of video file paths | |
| output_prefixes: List of output prefixes (uses default if None) | |
| positive_prompts: List of positive prompts (uses default if None) | |
| negative_prompts: List of negative prompts (uses default if None) | |
| style_prompt: Style prompt that will be combined with all positive prompts (optional) | |
| fps: Output video FPS (default: 16) | |
| num_frames: Number of frames to generate (default: 81) | |
| seed: Random seed for reproducible results (default: -1 for random) | |
| preprocess_option: Preprocessing method for control (default: "Canny") | |
| """ | |
| # With lazy loading, we don't need to check models_loaded | |
| # Models will be loaded on-demand during processing | |
| results = [] | |
| for i, video_file in enumerate(video_files): | |
| print(f"Processing video {i+1}/{len(video_files)}: {video_file}") | |
| # Use provided values or defaults | |
| output_prefix = output_prefixes[i] if output_prefixes and i < len(output_prefixes) else f"video/ComfyUI_{i}" | |
| positive_prompt = positive_prompts[i] if positive_prompts and i < len(positive_prompts) else None | |
| negative_prompt = negative_prompts[i] if negative_prompts and i < len(negative_prompts) else None | |
| try: | |
| result = processor._process_single_video( | |
| video_file_path=video_file, | |
| output_prefix=output_prefix, | |
| positive_prompt=positive_prompt, | |
| negative_prompt=negative_prompt, | |
| style_prompt=style_prompt, | |
| preprocess_option=args.preprocess, | |
| num_frames=args.frames, | |
| fps=args.fps, | |
| seed=args.seed | |
| ) | |
| results.append(result) | |
| except Exception as e: | |
| print(f"Error processing {video_file}: {e}") | |
| results.append(None) | |
| return results | |
| def load_videos_and_prompts(directory_path: str): | |
| """ | |
| Load videos and prompts from a directory. | |
| Args: | |
| directory_path: Path to directory containing .mp4 files and .txt files | |
| Returns: | |
| tuple: (video_files, positive_prompts) lists | |
| """ | |
| # Find all mp4 files | |
| video_pattern = os.path.join(directory_path, "*.mp4") | |
| video_files = sorted(glob.glob(video_pattern)) | |
| # Find corresponding txt files | |
| positive_prompts = [] | |
| for video_file in video_files: | |
| # Get base name without extension | |
| base_name = os.path.splitext(os.path.basename(video_file))[0] | |
| txt_file = os.path.join(directory_path, f"{base_name}.txt") | |
| if os.path.exists(txt_file): | |
| with open(txt_file, 'r', encoding='utf-8') as f: | |
| prompt = f.read().strip() | |
| positive_prompts.append(prompt) | |
| else: | |
| # Use default prompt if no txt file found | |
| positive_prompts.append("A beautiful video scene") | |
| return video_files, positive_prompts | |
| def parse_arguments(): | |
| """ | |
| Parse command line arguments for the video processing script. | |
| Returns: | |
| argparse.Namespace: Parsed arguments | |
| """ | |
| parser = argparse.ArgumentParser( | |
| description="Process videos with AI re-renderer and style transfer", | |
| formatter_class=argparse.RawDescriptionHelpFormatter, | |
| epilog=""" | |
| Examples: | |
| # Process a single video file | |
| python wan22_style.py --input video.mp4 --output processed_video.mp4 | |
| # Process all videos in a directory | |
| python wan22_style.py --input /path/to/videos/ --output /path/to/output/ | |
| # Process with custom prompts | |
| python wan22_style.py --input video.mp4 --positive "A cinematic scene" --negative "blurry, low quality" | |
| # Process with style prompt | |
| python wan22_style.py --input video.mp4 --style-prompt "in the style of Van Gogh" --positive "A beautiful landscape" | |
| # Process directory with custom output directory | |
| python wan22_style.py --input /path/to/videos/ --output /path/to/output/ --batch | |
| """ | |
| ) | |
| parser.add_argument( | |
| '--input', '-i', | |
| default="test/town04.mp4", | |
| help='Input video file or directory containing videos to process' | |
| ) | |
| parser.add_argument( | |
| '--output', '-o', | |
| help='Output file or directory. For single file: specify output filename. For directory: specify output directory (default: video/)' | |
| ) | |
| parser.add_argument( | |
| '--positive', '-p', | |
| default="A video of a wide, multi-lane highway in a mountainous region. The road curves gently to the right, with smooth asphalt and bright white dashed lane markings. A silver car drives slightly ahead in the left lane, with glowing blue tail lights. On the right side, a tall concrete barrier with a blue fence section lines the edge of the highway. Beyond it, a forest of tall evergreen trees rises against the base of mist-covered rocky mountains. Streetlights stand along the road, casting a faint industrial presence, though the ambient light comes mainly from the overcast sky. The air feels hazy, with muted visibility softening the distant trees and hills. The camera moves steadily forward", | |
| help='Positive prompt' | |
| ) | |
| parser.add_argument( | |
| '--negative', '-n', | |
| help='Negative prompt', | |
| default="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,CG, game, cartoon, anime, render, 渲染,游戏,卡通" | |
| ) | |
| parser.add_argument( | |
| '--style-prompt', '-s', | |
| help='Style positive prompt that will be combined with the main positive prompt', | |
| default="Turn it into a photorealistic picture as if it's from a movie. Keep the original lane markers and number of lanes." | |
| ) | |
| parser.add_argument( | |
| '--batch', | |
| action='store_true', | |
| help='Process all videos in the input directory (automatically detected for directories)' | |
| ) | |
| parser.add_argument( | |
| '--fps', | |
| type=int, | |
| default=16, | |
| help='Output video FPS (default: 16)' | |
| ) | |
| parser.add_argument( | |
| '--frames', | |
| type=int, | |
| default=81, | |
| help='Number of frames to generate (default: 81)' | |
| ) | |
| parser.add_argument( | |
| '--seed', | |
| type=int, | |
| default=-1, | |
| help='Random seed for reproducible results (default: -1 for random)' | |
| ) | |
| parser.add_argument( | |
| '--preprocess', | |
| choices=['Canny', 'Intensity', 'None'], | |
| default='Intensity', | |
| help='Preprocessing method for control (default: Canny)' | |
| ) | |
| return parser.parse_args() | |
| def validate_input_path(input_path: str): | |
| """ | |
| Validate the input path and determine if it's a file or directory. | |
| Args: | |
| input_path: Path to validate | |
| Returns: | |
| tuple: (is_file, is_directory, valid_path) | |
| """ | |
| if not os.path.exists(input_path): | |
| return False, False, False | |
| is_file = os.path.isfile(input_path) | |
| is_directory = os.path.isdir(input_path) | |
| if is_file: | |
| # Check if it's a video file | |
| video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.webm'] | |
| if not any(input_path.lower().endswith(ext) for ext in video_extensions): | |
| print(f"Warning: {input_path} may not be a supported video format") | |
| return is_file, is_directory, True | |
| def get_output_paths(input_path: str, output_arg: str, is_directory: bool): | |
| """ | |
| Determine output paths based on input and output arguments. | |
| Args: | |
| input_path: Input file or directory path | |
| output_arg: Output argument from command line | |
| is_directory: Whether input is a directory | |
| Returns: | |
| tuple: (output_prefixes, output_dir) | |
| """ | |
| if is_directory: | |
| # Processing directory | |
| if output_arg: | |
| output_dir = output_arg | |
| else: | |
| output_dir = "video" | |
| # Get all video files in directory | |
| video_files, _ = load_videos_and_prompts(input_path) | |
| output_prefixes = [] | |
| for video_file in video_files: | |
| base_name = os.path.splitext(os.path.basename(video_file))[0] | |
| output_prefixes.append(os.path.join(output_dir, f"processed_{base_name}")) | |
| return output_prefixes, output_dir | |
| else: | |
| # Processing single file | |
| if output_arg: | |
| if os.path.isdir(output_arg): | |
| # Output is a directory, create filename | |
| base_name = os.path.splitext(os.path.basename(input_path))[0] | |
| output_file = os.path.join(output_arg, f"processed_{base_name}.mp4") | |
| else: | |
| # Output is a specific file | |
| output_file = output_arg | |
| else: | |
| # Default output | |
| base_name = os.path.splitext(os.path.basename(input_path))[0] | |
| output_file = f"video/processed_{base_name}.mp4" | |
| # Create output directory | |
| output_dir = os.path.dirname(output_file) | |
| os.makedirs(output_dir, exist_ok=True) | |
| return [output_file], output_dir | |
| if __name__ == "__main__": | |
| """ | |
| Main entry point for command line video processing. | |
| """ | |
| # Parse command line arguments | |
| args = parse_arguments() | |
| # Validate input path | |
| is_file, is_directory, valid_path = validate_input_path(args.input) | |
| if not valid_path: | |
| print(f"Error: Input path '{args.input}' does not exist.") | |
| sys.exit(1) | |
| if not is_file and not is_directory: | |
| print(f"Error: Input path '{args.input}' is neither a file nor a directory.") | |
| sys.exit(1) | |
| # Initialize the processor | |
| print("Initializing Video Style Shaper...") | |
| processor = VideoProcessor() | |
| # Determine output paths | |
| output_prefixes, output_dir = get_output_paths(args.input, args.output, is_directory) | |
| # Create output directory | |
| os.makedirs(output_dir, exist_ok=True) | |
| args.input = os.path.abspath(args.input) | |
| if is_file: | |
| # Process single file | |
| print(f"Processing single video: {args.input}") | |
| print(f"Output will be saved to: {output_prefixes[0]}") | |
| # Use custom prompts if provided, otherwise use defaults | |
| positive_prompt = args.positive | |
| negative_prompt = args.negative | |
| style_prompt = args.style_prompt | |
| try: | |
| result = processor._process_single_video( | |
| video_file_path=args.input, | |
| output_prefix=output_prefixes[0], | |
| positive_prompt=positive_prompt, | |
| negative_prompt=negative_prompt, | |
| style_prompt=style_prompt, | |
| preprocess_option=args.preprocess, | |
| num_frames=args.frames, | |
| fps=args.fps, | |
| seed=args.seed | |
| ) | |
| if result: | |
| print(f"Successfully processed video: {result}") | |
| else: | |
| print("Video processing failed.") | |
| sys.exit(1) | |
| except Exception as e: | |
| print(f"Error processing video: {e}") | |
| sys.exit(1) | |
| else: | |
| # Process directory | |
| print(f"Processing directory: {args.input}") | |
| print(f"Output directory: {output_dir}") | |
| # Load videos and prompts from directory | |
| video_files, positive_prompts = load_videos_and_prompts(args.input) | |
| if not video_files: | |
| print(f"No video files found in directory: {args.input}") | |
| sys.exit(1) | |
| print(f"Found {len(video_files)} videos to process:") | |
| for i, (video, prompt) in enumerate(zip(video_files, positive_prompts)): | |
| print(f" {i+1}. {os.path.basename(video)}") | |
| if prompt != "A beautiful video scene": # Only show custom prompts | |
| print(f" Prompt: {prompt[:100]}...") | |
| if args.negative: | |
| negative_prompts = [args.negative] * len(video_files) | |
| print(f"Using custom negative prompt: {args.negative}") | |
| else: | |
| negative_prompts = None | |
| if args.style_prompt: | |
| print(f"Using style positive prompt: {args.style_prompt}") | |
| # Process all videos | |
| try: | |
| results = processor.process_batch( | |
| video_files=video_files, | |
| output_prefixes=output_prefixes, | |
| positive_prompts=positive_prompts, | |
| negative_prompts=negative_prompts, | |
| style_prompt=args.style_prompt, | |
| fps=args.fps, | |
| num_frames=args.frames, | |
| seed=args.seed, | |
| preprocess_option=args.preprocess | |
| ) | |
| # Count successful results | |
| successful = sum(1 for r in results if r is not None) | |
| failed = len(results) - successful | |
| print(f"\nBatch processing completed!") | |
| print(f"Successfully processed: {successful} videos") | |
| if failed > 0: | |
| print(f"Failed: {failed} videos") | |
| print(f"Output directory: {output_dir}") | |
| print("Intermediate results saved to: video/intermediates/") | |
| except Exception as e: | |
| print(f"Error during batch processing: {e}") | |
| sys.exit(1) | |