|
|
import gradio as gr |
|
|
import spaces |
|
|
import os |
|
|
import sys |
|
|
import subprocess |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import cv2 |
|
|
import torch |
|
|
import random |
|
|
|
|
|
from controlnet_aux import OpenposeDetector, CannyDetector |
|
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
|
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
from huggingface_hub import login |
|
|
hf_token = os.environ.get("HF_TOKEN_GATED") |
|
|
login(token=hf_token) |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
return seed |
|
|
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
model_configs = { |
|
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
|
} |
|
|
|
|
|
encoder = 'vitl' |
|
|
model = DepthAnythingV2(**model_configs[encoder]) |
|
|
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model") |
|
|
state_dict = torch.load(filepath, map_location="cpu") |
|
|
model.load_state_dict(state_dict) |
|
|
model = model.to(DEVICE).eval() |
|
|
|
|
|
import torch |
|
|
from diffusers.utils import load_image |
|
|
from diffusers import FluxControlNetPipeline, FluxControlNetModel |
|
|
from diffusers.models import FluxMultiControlNetModel |
|
|
|
|
|
base_model = 'black-forest-labs/FLUX.1-dev' |
|
|
controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro' |
|
|
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) |
|
|
controlnet = FluxMultiControlNetModel([controlnet]) |
|
|
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) |
|
|
pipe.to("cuda") |
|
|
|
|
|
mode_mapping = {"canny":0, "tile":1, "depth":2, "blur":3, "openpose":4, "gray":5, "low quality": 6} |
|
|
strength_mapping = {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4} |
|
|
|
|
|
canny = CannyDetector() |
|
|
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") |
|
|
|
|
|
def convert_from_image_to_cv2(img: Image) -> np.ndarray: |
|
|
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
def convert_from_cv2_to_image(img: np.ndarray) -> Image: |
|
|
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
def extract_depth(image): |
|
|
image = np.asarray(image) |
|
|
depth = model.infer_image(image[:, :, ::-1]) |
|
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
|
depth = depth.astype(np.uint8) |
|
|
gray_depth = Image.fromarray(depth).convert('RGB') |
|
|
return gray_depth |
|
|
|
|
|
def extract_openpose(img): |
|
|
processed_image_open_pose = open_pose(img, hand_and_face=True) |
|
|
return processed_image_open_pose |
|
|
|
|
|
def extract_canny(image): |
|
|
processed_image_canny = canny(image) |
|
|
return processed_image_canny |
|
|
|
|
|
def apply_gaussian_blur(image, kernel_size=(21, 21)): |
|
|
image = convert_from_image_to_cv2(image) |
|
|
blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0)) |
|
|
return blurred_image |
|
|
|
|
|
def convert_to_grayscale(image): |
|
|
image = convert_from_image_to_cv2(image) |
|
|
gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) |
|
|
return gray_image |
|
|
|
|
|
def add_gaussian_noise(image, mean=0, sigma=10): |
|
|
image = convert_from_image_to_cv2(image) |
|
|
noise = np.random.normal(mean, sigma, image.shape) |
|
|
noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8)) |
|
|
return noisy_image |
|
|
|
|
|
def tile(input_image, resolution=1024): |
|
|
input_image = convert_from_image_to_cv2(input_image) |
|
|
H, W, C = input_image.shape |
|
|
H = float(H) |
|
|
W = float(W) |
|
|
k = float(resolution) / min(H, W) |
|
|
H *= k |
|
|
W *= k |
|
|
H = int(np.round(H / 64.0)) * 64 |
|
|
W = int(np.round(W / 64.0)) * 64 |
|
|
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) |
|
|
img = convert_from_cv2_to_image(img) |
|
|
return img |
|
|
|
|
|
def resize_img(input_image, max_side=1024, min_side=768, size=None, |
|
|
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): |
|
|
|
|
|
w, h = input_image.size |
|
|
if size is not None: |
|
|
w_resize_new, h_resize_new = size |
|
|
else: |
|
|
ratio = min_side / min(h, w) |
|
|
w, h = round(ratio*w), round(ratio*h) |
|
|
ratio = max_side / max(h, w) |
|
|
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) |
|
|
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number |
|
|
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number |
|
|
input_image = input_image.resize([w_resize_new, h_resize_new], mode) |
|
|
|
|
|
if pad_to_max_side: |
|
|
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 |
|
|
offset_x = (max_side - w_resize_new) // 2 |
|
|
offset_y = (max_side - h_resize_new) // 2 |
|
|
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) |
|
|
input_image = Image.fromarray(res) |
|
|
return input_image |
|
|
|
|
|
@spaces.GPU(duration=190) |
|
|
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)): |
|
|
|
|
|
control_mode_num = mode_mapping[control_mode] |
|
|
|
|
|
if cond_in is None: |
|
|
if image_in is not None: |
|
|
image_in = resize_img(load_image(image_in)) |
|
|
if control_mode == "canny": |
|
|
control_image = extract_canny(image_in) |
|
|
elif control_mode == "depth": |
|
|
control_image = extract_depth(image_in) |
|
|
elif control_mode == "openpose": |
|
|
control_image = extract_openpose(image_in) |
|
|
elif control_mode == "blur": |
|
|
control_image = apply_gaussian_blur(image_in) |
|
|
elif control_mode == "low quality": |
|
|
control_image = add_gaussian_noise(image_in) |
|
|
elif control_mode == "gray": |
|
|
control_image = convert_to_grayscale(image_in) |
|
|
elif control_mode == "tile": |
|
|
control_image = tile(image_in) |
|
|
else: |
|
|
control_image = resize_img(load_image(cond_in)) |
|
|
|
|
|
width, height = control_image.size |
|
|
|
|
|
image = pipe( |
|
|
prompt, |
|
|
control_image=[control_image], |
|
|
control_mode=[control_mode_num], |
|
|
width=width, |
|
|
height=height, |
|
|
controlnet_conditioning_scale=[control_strength], |
|
|
num_inference_steps=inference_steps, |
|
|
guidance_scale=guidance_scale, |
|
|
generator=torch.manual_seed(seed), |
|
|
).images[0] |
|
|
|
|
|
return image, control_image, gr.update(visible=True) |
|
|
|
|
|
|
|
|
css=""" |
|
|
#col-container{ |
|
|
margin: 0 auto; |
|
|
max-width: 1080px; |
|
|
} |
|
|
""" |
|
|
with gr.Blocks(css=css) as demo: |
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.Markdown(""" |
|
|
# FLUX.1-dev-ControlNet-Union-Pro |
|
|
A unified ControlNet for FLUX.1-dev model from the InstantX team and Shakker Labs. Model card: [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro). <br /> |
|
|
The recommended strength: {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4}. Long prompt is preferred by FLUX.1. |
|
|
""") |
|
|
|
|
|
with gr.Column(): |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
|
cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath") |
|
|
image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath") |
|
|
|
|
|
prompt = gr.Textbox(label="Prompt", value="best quality") |
|
|
|
|
|
with gr.Accordion("Controlnet"): |
|
|
control_mode = gr.Radio( |
|
|
["canny", "depth", "openpose", "gray", "blur", "tile", "low quality"], label="Mode", value="gray", |
|
|
info="select the control mode, one for all" |
|
|
) |
|
|
|
|
|
control_strength = gr.Slider( |
|
|
label="control strength", |
|
|
minimum=0, |
|
|
maximum=1.0, |
|
|
step=0.05, |
|
|
value=0.50, |
|
|
) |
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=42, |
|
|
) |
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Accordion("Advanced settings", open=False): |
|
|
with gr.Column(): |
|
|
with gr.Row(): |
|
|
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=24) |
|
|
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5) |
|
|
|
|
|
submit_btn = gr.Button("Submit") |
|
|
|
|
|
with gr.Column(): |
|
|
result = gr.Image(label="Result") |
|
|
processed_cond = gr.Image(label="Preprocessed Cond") |
|
|
|
|
|
submit_btn.click( |
|
|
fn=randomize_seed_fn, |
|
|
inputs=[seed, randomize_seed], |
|
|
outputs=seed, |
|
|
queue=False, |
|
|
api_name=False |
|
|
).then( |
|
|
fn = infer, |
|
|
inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed], |
|
|
outputs = [result, processed_cond], |
|
|
show_api=False |
|
|
) |
|
|
|
|
|
demo.queue(api_open=False) |
|
|
demo.launch() |