Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,330 Bytes
937a94e 4b0fe46 937a94e 4b0fe46 937a94e f9f24d7 937a94e 4b0fe46 937a94e 4b0fe46 937a94e 4b0fe46 f5a3617 c5db835 f9f24d7 c5db835 4b0fe46 c5db835 4b0fe46 968b96f 4b0fe46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from typing import Any
from typing import Callable
from typing import ParamSpec
import spaces
import torch
from torch.utils._pytree import tree_map
P = ParamSpec("P")
TRANSFORMER_HIDDEN_DIM = torch.export.Dim("hidden", min=4096, max=8212)
# Specific to Flux. More about this is available in
# https://huggingface.co/blog/zerogpu-aoti
TRANSFORMER_DYNAMIC_SHAPES = {
"hidden_states": {1: TRANSFORMER_HIDDEN_DIM},
"img_ids": {0: TRANSFORMER_HIDDEN_DIM},
}
INDUCTOR_CONFIGS = {
"conv_1x1_as_mm": True,
"epilogue_fusion": False,
"coordinate_descent_tuning": True,
"coordinate_descent_check_all_directions": True,
"max_autotune": True,
"triton.cudagraphs": True,
}
def compile_transformer(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
@spaces.GPU(duration=1500)
def f():
with spaces.aoti_capture(pipeline.transformer) as call:
pipeline(*args, **kwargs)
dynamic_shapes = tree_map(lambda v: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
exported = torch.export.export(
mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes
)
return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
compiled_transformer = f()
return compiled_transformer
|