Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Adapted from | |
| https://github.com/huggingface/flux-fast/blob/156281514e2725782ffab9431d4004840f7e3b4d/utils/pipeline_utils.py#L87 | |
| """ | |
| import torch | |
| from typing import List, Optional | |
| import inspect | |
| import torch | |
| from kernels import get_kernel | |
| _flash_attn_func = get_kernel("kernels-community/vllm-flash-attn3").flash_attn_func | |
| def flash_attn_func( | |
| q: torch.Tensor, | |
| k: torch.Tensor, | |
| v: torch.Tensor, | |
| softmax_scale: Optional[float] = None, | |
| causal: bool = False, | |
| # probably wrong type for these 4 | |
| qv: Optional[float] = None, | |
| q_descale: Optional[float] = None, | |
| k_descale: Optional[float] = None, | |
| v_descale: Optional[float] = None, | |
| window_size: Optional[List[int]] = None, | |
| sink_token_length: int = 0, | |
| softcap: float = 0.0, | |
| num_splits: int = 1, | |
| # probably wrong type for this too | |
| pack_gqa: Optional[float] = None, | |
| deterministic: bool = False, | |
| sm_margin: int = 0, | |
| ) -> torch.Tensor: # Tuple[torch.Tensor, torch.Tensor]: | |
| if window_size is None: | |
| window_size = (-1, -1) | |
| else: | |
| window_size = tuple(window_size) | |
| sig = inspect.signature(_flash_attn_func) | |
| accepted = set(sig.parameters) | |
| all_kwargs = { | |
| "softmax_scale": softmax_scale, | |
| "causal": causal, | |
| "qv": qv, | |
| "q_descale": q_descale, | |
| "k_descale": k_descale, | |
| "v_descale": v_descale, | |
| "window_size": window_size, | |
| "sink_token_length": sink_token_length, | |
| "softcap": softcap, | |
| "num_splits": num_splits, | |
| "pack_gqa": pack_gqa, | |
| "deterministic": deterministic, | |
| "sm_margin": sm_margin, | |
| } | |
| kwargs = {k: v for k, v in all_kwargs.items() if k in accepted} | |
| outputs = _flash_attn_func(q, k, v, **kwargs) | |
| return outputs[0] | |
| def _(q, k, v, **kwargs): | |
| # two outputs: | |
| # 1. output: (batch, seq_len, num_heads, head_dim) | |
| # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32 | |
| meta_q = torch.empty_like(q).contiguous() | |
| return meta_q # , q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32) | |
| class FlashFluxAttnProcessor3_0: | |
| """Attention processor used typically in processing the SD3-like self-attention projections.""" | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.FloatTensor: | |
| batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| # `sample` projections. | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
| # `context` projections. | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| if attn.norm_added_q is not None: | |
| encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
| if attn.norm_added_k is not None: | |
| encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
| # attention | |
| query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
| key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
| value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
| if image_rotary_emb is not None: | |
| from diffusers.models.embeddings import apply_rotary_emb | |
| query = apply_rotary_emb(query, image_rotary_emb) | |
| key = apply_rotary_emb(key, image_rotary_emb) | |
| # NB: transposes are necessary to match expected SDPA input shape | |
| hidden_states = flash_attn_func(query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2))[ | |
| 0 | |
| ].transpose(1, 2) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states, hidden_states = ( | |
| hidden_states[:, : encoder_hidden_states.shape[1]], | |
| hidden_states[:, encoder_hidden_states.shape[1] :], | |
| ) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| return hidden_states, encoder_hidden_states | |
| else: | |
| return hidden_states |