File size: 11,351 Bytes
3de369a 2f78611 3de369a 2f78611 3de369a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# app.py
import io
import json
import os
from typing import Dict, Any, Optional, Tuple, List
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import streamlit as st
# =========================
# Theme (your spec + paper knobs)
# =========================
plt.rcParams["font.family"] = "monospace"
PRIMARY = np.array([166, 0, 0]) / 255
CONTRARY = np.array([0, 166, 166]) / 255
NEUTRAL_MEDIUM_GREY = np.array([128, 128, 128]) / 255
NEUTRAL_DARK_GREY = np.array([64, 64, 64]) / 255
def _mix(c1, c2, t: float):
c1 = np.array(c1, dtype=float)
c2 = np.array(c2, dtype=float)
return (1 - t) * c1 + t * c2
def palette():
white = np.array([1.0, 1.0, 1.0])
return [
PRIMARY,
CONTRARY,
NEUTRAL_DARK_GREY,
NEUTRAL_MEDIUM_GREY,
_mix(PRIMARY, white, 0.35),
_mix(CONTRARY, white, 0.35),
_mix(NEUTRAL_DARK_GREY, white, 0.45),
_mix(NEUTRAL_MEDIUM_GREY, white, 0.35),
]
def set_paper_style(exaggerated: bool = True):
if exaggerated:
base = 18
label = 22
title = 24
tick = 18
legend = 18
else:
base = 12
label = 14
title = 16
tick = 12
legend = 12
plt.rcParams.update({
"font.size": base,
"axes.titlesize": title,
"axes.labelsize": label,
"xtick.labelsize": tick,
"ytick.labelsize": tick,
"legend.fontsize": legend,
"axes.linewidth": 1.6,
"lines.linewidth": 2.8,
"lines.markersize": 7.0,
"grid.alpha": 0.25,
"grid.linewidth": 1.0,
"figure.dpi": 120,
"savefig.dpi": 600,
"savefig.bbox": "tight",
"savefig.pad_inches": 0.03,
"xtick.direction": "out",
"ytick.direction": "out",
"xtick.major.size": 6.0,
"ytick.major.size": 6.0,
"xtick.major.width": 1.4,
"ytick.major.width": 1.4,
})
def clean_axes(ax):
ax.grid(True, which="major", axis="both")
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
return ax
def figure_size(preset: str) -> Tuple[float, float]:
presets = {
"single": (3.45, 2.60),
"single_tall": (3.45, 3.20),
"double": (7.10, 2.90),
"double_tall": (7.10, 3.80),
"square": (4.00, 4.00),
"wide": (7.10, 2.40),
}
return presets[preset]
# =========================
# Loading: csv / json / npz / npy
# =========================
def load_to_df(uploaded_file) -> pd.DataFrame:
name = uploaded_file.name
ext = os.path.splitext(name)[1].lower()
data = uploaded_file.getvalue()
if ext == ".csv":
return pd.read_csv(io.BytesIO(data))
if ext == ".json":
obj = json.loads(data.decode("utf-8"))
if isinstance(obj, dict):
return pd.DataFrame(obj)
if isinstance(obj, list):
return pd.DataFrame(obj)
raise ValueError("Unsupported JSON: use dict-of-lists or list-of-dicts.")
if ext == ".npz":
z = np.load(io.BytesIO(data), allow_pickle=True)
cols: Dict[str, Any] = {k: z[k] for k in z.files}
# try to flatten 1D arrays into columns
df = pd.DataFrame()
for k, v in cols.items():
v = np.asarray(v)
if v.ndim == 1:
df[k] = v
if len(df.columns) == 0:
raise ValueError(".npz has no 1D arrays to treat as columns.")
return df
if ext == ".npy":
arr = np.load(io.BytesIO(data), allow_pickle=True)
arr = np.asarray(arr)
if arr.dtype.names:
return pd.DataFrame({n: arr[n] for n in arr.dtype.names})
if arr.ndim == 1:
return pd.DataFrame({"y": arr})
if arr.ndim == 2:
# columns: y0,y1,...
return pd.DataFrame(arr, columns=[f"y{i}" for i in range(arr.shape[1])])
raise ValueError("Unsupported .npy shape. Use 1D or 2D array or structured array.")
raise ValueError(f"Unsupported file extension: {ext}")
# =========================
# Aggregation for error bars
# =========================
def aggregate_xy(x: np.ndarray, y: np.ndarray, mode: str):
# groups by exact x
df = pd.DataFrame({"x": x, "y": y}).dropna()
g = df.groupby("x")["y"]
mean = g.mean()
if mode == "std":
err = g.std(ddof=1).fillna(0.0)
elif mode == "sem":
err = (g.std(ddof=1) / np.sqrt(g.count())).fillna(0.0)
else:
err = pd.Series(0.0, index=mean.index)
xu = mean.index.to_numpy()
return xu, mean.to_numpy(), err.to_numpy()
# =========================
# Plotting
# =========================
def make_plot(
df: pd.DataFrame,
kind: str,
xcol: Optional[str],
ycols: List[str],
hue: Optional[str],
agg: str,
fill_band: bool,
title: str,
xlabel: str,
ylabel: str,
logx: bool,
logy: bool,
legend_mode: str,
size_preset: str,
hist_bins: int,
hist_density: bool,
exaggerated_text: bool,
):
set_paper_style(exaggerated=exaggerated_text)
w, h = figure_size(size_preset)
fig, ax = plt.subplots(figsize=(w, h), constrained_layout=True)
colors = palette()
def _plot_series(label, x, y, color):
if kind == "line":
if agg in ("std", "sem"):
xu, ym, ye = aggregate_xy(x, y, agg)
ax.plot(xu, ym, marker="o", label=label, color=color)
if fill_band and np.any(ye > 0):
ax.fill_between(xu, ym - ye, ym + ye, alpha=0.18, color=color, linewidth=0)
else:
ax.plot(x, y, marker="o", label=label, color=color)
elif kind == "scatter":
ax.scatter(x, y, label=label, color=color, s=52, alpha=0.85, edgecolors="none")
elif kind == "bar":
# category bars: mean per category
tmp = pd.DataFrame({"x": x, "y": y}).dropna()
means = tmp.groupby("x")["y"].mean()
xs = means.index.tolist()
ys = means.values
# stable positions
pos = np.arange(len(xs))
ax.bar(pos, ys, label=label, color=color)
ax.set_xticks(pos, xs)
elif kind == "hist":
ax.hist(np.asarray(y, dtype=float), bins=hist_bins, density=hist_density,
alpha=0.35, label=label, color=color)
if kind != "hist":
assert xcol is not None
x = df[xcol].to_numpy()
# hue grouping
if hue and hue in df.columns:
groups = df[hue].astype(str).unique().tolist()
ci = 0
for g in groups:
sub = df[df[hue].astype(str) == g]
gx = sub[xcol].to_numpy()
for yc in ycols:
_plot_series(f"{yc} | {hue}={g}", gx, sub[yc].to_numpy(), colors[ci % len(colors)])
ci += 1
else:
for i, yc in enumerate(ycols):
_plot_series(yc, x, df[yc].to_numpy(), colors[i % len(colors)])
else:
for i, yc in enumerate(ycols):
_plot_series(yc, None, df[yc].to_numpy(), colors[i % len(colors)])
clean_axes(ax)
if title.strip():
ax.set_title(title)
if kind != "hist":
ax.set_xlabel(xlabel if xlabel.strip() else xcol)
else:
ax.set_xlabel(xlabel if xlabel.strip() else "")
ax.set_ylabel(ylabel if ylabel.strip() else (", ".join(ycols) if ycols else ""))
if logx and kind != "hist":
ax.set_xscale("log")
if logy:
ax.set_yscale("log")
if legend_mode == "none":
if ax.get_legend() is not None:
ax.get_legend().remove()
elif legend_mode == "outside":
ax.legend(loc="center left", bbox_to_anchor=(1.02, 0.5), frameon=False)
else:
ax.legend(loc="best", frameon=False)
return fig
def fig_to_bytes(fig, fmt: str) -> bytes:
buf = io.BytesIO()
fig.savefig(buf, format=fmt)
buf.seek(0)
return buf.read()
# =========================
# Streamlit UI
# =========================
st.set_page_config(page_title="PaperPlot (Matplotlib)", layout="wide")
st.title("PaperPlot: upload data → tweak params → live preview → export")
left, right = st.columns([1, 2])
with left:
uploaded = st.file_uploader("Upload data", type=["csv", "json", "npz", "npy"])
st.caption("Supported: .csv / .json / .npz / .npy")
kind = st.selectbox("Plot kind", ["line", "scatter", "bar", "hist"], index=0)
exaggerated_text = st.toggle("Exaggerate text (paper readability)", value=True)
size_preset = st.selectbox(
"Figure size preset",
["single", "single_tall", "double", "double_tall", "square", "wide"],
index=0
)
title = st.text_input("Title", value="")
xlabel = st.text_input("X label (optional)", value="")
ylabel = st.text_input("Y label (optional)", value="")
logx = st.toggle("Log X", value=False)
logy = st.toggle("Log Y", value=False)
legend_mode = st.selectbox("Legend", ["best", "outside", "none"], index=0)
agg = st.selectbox("Aggregate repeated x (line only)", ["none", "std", "sem"], index=0)
fill_band = st.toggle("Show error band (line + agg)", value=True)
hist_bins = st.slider("Hist bins", 5, 200, 30)
hist_density = st.toggle("Hist density", value=True)
with right:
if not uploaded:
st.info("Upload a dataset to start.")
st.stop()
try:
df = load_to_df(uploaded)
except Exception as e:
st.error(f"Failed to load file: {e}")
st.stop()
st.subheader("Data preview")
st.dataframe(df.head(50), use_container_width=True)
cols = df.columns.tolist()
numeric_cols = [c for c in cols if pd.api.types.is_numeric_dtype(df[c])]
if kind != "hist":
xcol = st.selectbox("X column", options=numeric_cols if numeric_cols else cols)
else:
xcol = None
if numeric_cols:
default_y = numeric_cols[:1]
else:
default_y = cols[:1]
ycols = st.multiselect("Y column(s)", options=numeric_cols if numeric_cols else cols, default=default_y)
hue = None
if kind != "hist":
hue = st.selectbox("Group / hue (optional)", options=["(none)"] + cols, index=0)
hue = None if hue == "(none)" else hue
if not ycols:
st.warning("Pick at least one Y column.")
st.stop()
fig = make_plot(
df=df,
kind=kind,
xcol=xcol,
ycols=ycols,
hue=hue,
agg=agg if kind == "line" else "none",
fill_band=fill_band,
title=title,
xlabel=xlabel,
ylabel=ylabel,
logx=logx,
logy=logy,
legend_mode=legend_mode,
size_preset=size_preset,
hist_bins=hist_bins,
hist_density=hist_density,
exaggerated_text=exaggerated_text,
)
st.subheader("Live preview")
st.pyplot(fig, use_container_width=True)
c1, c2 = st.columns(2)
with c1:
st.download_button(
"Download PDF",
data=fig_to_bytes(fig, "pdf"),
file_name="figure.pdf",
mime="application/pdf",
)
with c2:
st.download_button(
"Download PNG",
data=fig_to_bytes(fig, "png"),
file_name="figure.png",
mime="image/png",
)
|