Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,234 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
message,
|
| 7 |
-
history: list[dict[str, str]],
|
| 8 |
-
system_message,
|
| 9 |
-
max_tokens,
|
| 10 |
-
temperature,
|
| 11 |
-
top_p,
|
| 12 |
-
hf_token: gr.OAuthToken,
|
| 13 |
-
):
|
| 14 |
-
"""
|
| 15 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 16 |
-
"""
|
| 17 |
-
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
stream=True,
|
| 31 |
-
temperature=temperature,
|
| 32 |
-
top_p=top_p,
|
| 33 |
-
):
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
|
|
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"""
|
| 44 |
-
|
| 45 |
-
""
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import zipfile
|
| 7 |
+
import os
|
| 8 |
+
import re
|
| 9 |
+
import torch
|
| 10 |
|
| 11 |
+
###############################################################################
|
| 12 |
+
# 1) LOAD MISTRAL IN 4-BIT (MUCH FASTER)
|
| 13 |
+
###############################################################################
|
| 14 |
+
bnb_config = BitsAndBytesConfig(
|
| 15 |
+
load_in_4bit=True,
|
| 16 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 17 |
+
bnb_4bit_use_double_quant=True,
|
| 18 |
+
bnb_4bit_quant_type="nf4",
|
| 19 |
+
)
|
| 20 |
|
| 21 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
+
model_name,
|
| 26 |
+
quantization_config=bnb_config,
|
| 27 |
+
device_map="auto"
|
| 28 |
+
)
|
| 29 |
|
| 30 |
+
llm = pipeline(
|
| 31 |
+
"text-generation",
|
| 32 |
+
model=model,
|
| 33 |
+
tokenizer=tokenizer,
|
| 34 |
+
max_new_tokens=200,
|
| 35 |
+
temperature=0.4,
|
| 36 |
+
)
|
| 37 |
|
| 38 |
+
###############################################################################
|
| 39 |
+
# 2) LOAD EMBEDDINGS
|
| 40 |
+
###############################################################################
|
| 41 |
+
embedding_model = SentenceTransformer("nlpaueb/legal-bert-base-uncased")
|
| 42 |
|
| 43 |
+
###############################################################################
|
| 44 |
+
# 3) EXTRACT ZIP + PARSE PROVINCE FILES
|
| 45 |
+
###############################################################################
|
| 46 |
+
zip_path = "/app/provinces.zip"
|
| 47 |
+
extract_folder = "/app/provinces_texts"
|
| 48 |
|
| 49 |
+
if os.path.exists(extract_folder):
|
| 50 |
+
import shutil
|
| 51 |
+
shutil.rmtree(extract_folder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 54 |
+
zip_ref.extractall(extract_folder)
|
| 55 |
|
| 56 |
+
date_regex = re.compile(r"(\d{4}[-_]\d{2}[-_]\d{2})")
|
| 57 |
|
| 58 |
+
def parse_metadata_and_content(raw):
|
| 59 |
+
if "CONTENT:" not in raw:
|
| 60 |
+
raise ValueError("Missing CONTENT: block.")
|
| 61 |
+
header, content = raw.split("CONTENT:", 1)
|
| 62 |
+
|
| 63 |
+
metadata = {}
|
| 64 |
+
pdfs = []
|
| 65 |
+
for line in header.split("\n"):
|
| 66 |
+
if ":" in line and not line.strip().startswith("-"):
|
| 67 |
+
key, value = line.split(":", 1)
|
| 68 |
+
metadata[key.strip().upper()] = value.strip()
|
| 69 |
+
elif line.strip().startswith("-"):
|
| 70 |
+
pdfs.append(line.strip())
|
| 71 |
+
|
| 72 |
+
if pdfs:
|
| 73 |
+
metadata["PDF_LINKS"] = "\n".join(pdfs)
|
| 74 |
+
|
| 75 |
+
return metadata, content.strip()
|
| 76 |
+
|
| 77 |
+
documents = []
|
| 78 |
+
|
| 79 |
+
for root, dirs, files in os.walk(extract_folder):
|
| 80 |
+
for filename in files:
|
| 81 |
+
if filename.startswith("._") or not filename.endswith(".txt"):
|
| 82 |
+
continue
|
| 83 |
+
filepath = os.path.join(root, filename)
|
| 84 |
+
try:
|
| 85 |
+
with open(filepath, "r", encoding="latin-1") as f:
|
| 86 |
+
raw = f.read()
|
| 87 |
+
metadata, content = parse_metadata_and_content(raw)
|
| 88 |
+
for p in [x.strip() for x in content.split("\n\n") if x.strip()]:
|
| 89 |
+
documents.append({
|
| 90 |
+
"source_title": metadata.get("SOURCE_TITLE", "Unknown"),
|
| 91 |
+
"province": metadata.get("PROVINCE", "Unknown"),
|
| 92 |
+
"last_updated": metadata.get("LAST_UPDATED", "Unknown"),
|
| 93 |
+
"url": metadata.get("URL", "N/A"),
|
| 94 |
+
"pdf_links": metadata.get("PDF_LINKS", ""),
|
| 95 |
+
"text": p
|
| 96 |
+
})
|
| 97 |
+
except Exception as e:
|
| 98 |
+
print("Skipping:", filepath, str(e))
|
| 99 |
+
|
| 100 |
+
###############################################################################
|
| 101 |
+
# 4) EMBEDDINGS + DATAFRAME
|
| 102 |
+
###############################################################################
|
| 103 |
+
texts = [d["text"] for d in documents]
|
| 104 |
+
embs = embedding_model.encode(texts).astype("float16")
|
| 105 |
+
|
| 106 |
+
df = pd.DataFrame(documents)
|
| 107 |
+
df["Embedding"] = list(embs)
|
| 108 |
+
|
| 109 |
+
###############################################################################
|
| 110 |
+
# 5) RAG RETRIEVAL
|
| 111 |
+
###############################################################################
|
| 112 |
+
def retrieve_with_pandas(query, province=None, top_k=2):
|
| 113 |
+
q_emb = embedding_model.encode([query])[0]
|
| 114 |
+
|
| 115 |
+
subset = df if province is None else df[df["province"] == province].copy()
|
| 116 |
+
|
| 117 |
+
subset["Similarity"] = subset["Embedding"].apply(
|
| 118 |
+
lambda x: np.dot(q_emb, x) /
|
| 119 |
+
(np.linalg.norm(q_emb) * np.linalg.norm(x))
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
return subset.sort_values("Similarity", ascending=False).head(top_k)
|
| 123 |
+
|
| 124 |
+
###############################################################################
|
| 125 |
+
# 6) Province detection
|
| 126 |
+
###############################################################################
|
| 127 |
+
def detect_province(query):
|
| 128 |
+
provinces = {
|
| 129 |
+
"yukon": "Yukon",
|
| 130 |
+
"alberta": "Alberta",
|
| 131 |
+
"bc": "British Columbia",
|
| 132 |
+
"british columbia": "British Columbia",
|
| 133 |
+
"manitoba": "Manitoba",
|
| 134 |
+
"newfoundland": "Newfoundland and Labrador",
|
| 135 |
+
"labrador": "Newfoundland and Labrador",
|
| 136 |
+
"sask": "Saskatchewan",
|
| 137 |
+
"saskatchewan": "Saskatchewan",
|
| 138 |
+
"ontario": "Ontario",
|
| 139 |
+
"pei": "Prince Edward Island",
|
| 140 |
+
"prince edward island": "Prince Edward Island",
|
| 141 |
+
"quebec": "Quebec",
|
| 142 |
+
"new brunswick": "New Brunswick",
|
| 143 |
+
"nb": "New Brunswick",
|
| 144 |
+
"nova scotia": "Nova Scotia",
|
| 145 |
+
"nunavut": "Nunavut",
|
| 146 |
+
"nwt": "Northwest Territories",
|
| 147 |
+
"northwest territories": "Northwest Territories",
|
| 148 |
+
}
|
| 149 |
+
q = query.lower()
|
| 150 |
+
for k, p in provinces.items():
|
| 151 |
+
if k in q:
|
| 152 |
+
return p
|
| 153 |
+
return None
|
| 154 |
+
|
| 155 |
+
###############################################################################
|
| 156 |
+
# 7) Guardrails
|
| 157 |
+
###############################################################################
|
| 158 |
+
def is_disallowed(q):
|
| 159 |
+
banned = ["kill", "suicide", "harm yourself", "bomb", "weapon"]
|
| 160 |
+
return any(b in q.lower() for b in banned)
|
| 161 |
+
|
| 162 |
+
def is_off_topic(q):
|
| 163 |
+
keys = [
|
| 164 |
+
"tenant","landlord","rent","evict","lease",
|
| 165 |
+
"deposit","tenancy","rental","apartment",
|
| 166 |
+
"unit","heating","notice","repair","pets"
|
| 167 |
+
]
|
| 168 |
+
return not any(k in q.lower() for k in keys)
|
| 169 |
+
|
| 170 |
+
###############################################################################
|
| 171 |
+
# 8) MAIN RAG PIPELINE
|
| 172 |
+
###############################################################################
|
| 173 |
+
def generate_with_rag(query):
|
| 174 |
+
if is_disallowed(query):
|
| 175 |
+
return "Sorry — I can’t help with harmful or dangerous topics."
|
| 176 |
+
if is_off_topic(query):
|
| 177 |
+
return "Sorry — I can only answer questions about Canadian tenancy and housing law."
|
| 178 |
+
|
| 179 |
+
province = detect_province(query)
|
| 180 |
+
top_docs = retrieve_with_pandas(query, province)
|
| 181 |
+
|
| 182 |
+
context = " ".join(top_docs["text"].tolist())
|
| 183 |
+
|
| 184 |
+
prompt = f"""
|
| 185 |
+
Use ONLY the context below to answer.
|
| 186 |
+
If the context does not contain the answer, say so.
|
| 187 |
+
Answer in a simple, conversational way.
|
| 188 |
+
|
| 189 |
+
Context:
|
| 190 |
+
{context}
|
| 191 |
+
|
| 192 |
+
Question: {query}
|
| 193 |
+
Answer:
|
| 194 |
"""
|
| 195 |
+
|
| 196 |
+
out = llm(prompt)[0]["generated_text"]
|
| 197 |
+
answer = out.split("Answer:", 1)[-1].strip()
|
| 198 |
+
|
| 199 |
+
# metadata section
|
| 200 |
+
meta = ""
|
| 201 |
+
for _, r in top_docs.iterrows():
|
| 202 |
+
meta += (
|
| 203 |
+
f"- **Province:** {r['province']}\n"
|
| 204 |
+
f" Source: {r['source_title']} (Updated {r['last_updated']})\n"
|
| 205 |
+
f" URL: {r['url']}\n"
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
return f"{answer}\n\n**Sources Used:**\n{meta}"
|
| 209 |
+
|
| 210 |
+
###############################################################################
|
| 211 |
+
# 9) GRADIO CHAT — INTRO ONLY ONCE
|
| 212 |
+
###############################################################################
|
| 213 |
+
INTRO = (
|
| 214 |
+
"👋 **Welcome!** I'm a Canadian rental housing assistant.\n\n"
|
| 215 |
+
"I can help you find and explain information from tenancy laws across all provinces.\n"
|
| 216 |
+
"I am **not a lawyer** — this is not legal advice.\n\n"
|
| 217 |
+
"What would you like to know?"
|
| 218 |
)
|
| 219 |
|
| 220 |
+
def start_chat():
|
| 221 |
+
return [(None, INTRO)]
|
| 222 |
+
|
| 223 |
+
def respond(message, history):
|
| 224 |
+
answer = generate_with_rag(message)
|
| 225 |
+
history.append((message, answer))
|
| 226 |
+
return history, history
|
| 227 |
|
| 228 |
+
with gr.Blocks() as demo:
|
| 229 |
+
chatbot = gr.Chatbot(value=start_chat())
|
| 230 |
+
msg = gr.Textbox(label="Ask your question")
|
| 231 |
+
msg.submit(respond, [msg, chatbot], [chatbot, chatbot])
|
| 232 |
|
| 233 |
if __name__ == "__main__":
|
| 234 |
+
demo.launch(share=True)
|