File size: 4,463 Bytes
786119b
11739c9
8bff74b
ec6f784
 
 
 
11739c9
 
ec6f784
 
 
11739c9
8bff74b
 
11739c9
 
 
 
ec6f784
 
 
8bff74b
 
ec6f784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bff74b
ec6f784
 
 
 
 
 
 
 
 
 
 
8bff74b
 
ec6f784
8bff74b
ec6f784
8bff74b
 
ec6f784
8bff74b
ec6f784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bff74b
 
 
ec6f784
8bff74b
 
 
ec6f784
 
 
 
 
8bff74b
 
 
 
 
 
 
ec6f784
 
 
8bff74b
 
 
 
 
 
 
 
 
 
 
 
786119b
ec6f784
 
8bff74b
 
 
 
 
 
 
 
 
 
ec6f784
 
 
 
 
 
 
 
 
 
786119b
 
ec6f784
 
 
 
786119b
 
ec6f784
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import pandas as pd
import numpy as np
import zipfile
import os
import torch

# -----------------------------
# Load Mistral pipeline
# -----------------------------
llm = pipeline(
    "text-generation",
    model="mistralai/Mistral-7B-Instruct-v0.2",
    torch_dtype=torch.float16,
    device_map="auto"
)

# -----------------------------
# Load SentenceTransformer embeddings
# -----------------------------
embedding_model = SentenceTransformer("nlpaueb/legal-bert-base-uncased")

# -----------------------------
# Extract Yukon ZIP
# -----------------------------
zip_path = "/app/yukon.zip"  # make sure you uploaded here
extract_folder = "/app/yukon_texts"

# Remove old folder if exists
if os.path.exists(extract_folder):
    import shutil
    shutil.rmtree(extract_folder)

with zipfile.ZipFile(zip_path, "r") as zip_ref:
    zip_ref.extractall(extract_folder)

# -----------------------------
# Parse TXT files and create dataframe
# -----------------------------
def parse_metadata_and_content(raw):
    metadata = {}
    content = raw

    for line in raw.split("\n"):
        if ":" in line:
            key, value = line.split(":", 1)
            metadata[key.strip().upper()] = value.strip()

    content_lines = [
        line for line in raw.split("\n") if not any(k in line.upper() for k in metadata.keys())
    ]
    content = "\n".join(content_lines)
    return metadata, content


documents = []

for root, dirs, files in os.walk(extract_folder):
    for filename in files:
        if filename.startswith("._"):
            continue
        if filename.endswith(".txt"):
            filepath = os.path.join(root, filename)
            with open(filepath, "r", encoding="latin-1") as f:
                raw = f.read()
            metadata, content = parse_metadata_and_content(raw)
            paragraphs = [p.strip() for p in content.split("\n\n") if p.strip()]
            for p in paragraphs:
                documents.append({
                    "source_title": metadata.get("SOURCE_TITLE", "Unknown"),
                    "province": metadata.get("PROVINCE", "Unknown"),
                    "last_updated": metadata.get("LAST_UPDATED", "Unknown"),
                    "url": metadata.get("URL", "N/A"),
                    "pdf_links": metadata.get("PDF_LINKS", ""),
                    "text": p
                })

texts = [d["text"] for d in documents]
embeddings = embedding_model.encode(texts).astype("float32")

df = pd.DataFrame(documents)
df["Embedding"] = list(embeddings)

print("Loaded documents:", len(df))

# -----------------------------
# Retrieval function
# -----------------------------
def retrieve_with_pandas(query, top_k=2):
    query_emb = embedding_model.encode([query])[0]
    df["Similarity"] = df["Embedding"].apply(
        lambda x: np.dot(query_emb, x) / (np.linalg.norm(query_emb) * np.linalg.norm(x))
    )
    return df.sort_values("Similarity", ascending=False).head(top_k)

# -----------------------------
# RAG generation
# -----------------------------
def generate_with_rag(query, top_k=2):
    top_docs = retrieve_with_pandas(query, top_k)
    context = " ".join(top_docs["text"].tolist())

    input_text = f"""
Use ONLY the following context to answer the question briefly (2–3 sentences).
Do NOT guess. Do NOT add external information.

Context:
{context}

Question: {query}
"""

    response = llm(input_text, max_new_tokens=150, num_return_sequences=1)[0]['generated_text']

    meta = []
    for _, row in top_docs.iterrows():
        meta.append(
            f"- Province: {row['province']}\n"
            f"  Source: {row['source_title']}\n"
            f"  Updated: {row['last_updated']}\n"
            f"  URL: {row['url']}\n"
        )
    metadata_block = "\n".join(meta)
    final = f"{response.strip()}\n\nSources Used:\n{metadata_block}"
    return final

# -----------------------------
# Gradio Chat
# -----------------------------
def respond(message, history):
    answer = generate_with_rag(message)
    history.append((message, answer))
    return history, history

with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox(label="Your question")
    msg.submit(respond, [msg, chatbot], [chatbot, chatbot])
    gr.Markdown("Ask questions about Yukon rental rules and landlord responsibilities.")

if __name__ == "__main__":
    demo.launch(share=True)