visualization-studio / index.html
znation's picture
znation HF Staff
try a different model
5257596
<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>Parquet Visualization Studio</title>
<link rel="stylesheet" href="style.css" />
<script src="https://cdn.jsdelivr.net/npm/@duckdb/duckdb-wasm@latest/dist/duckdb-mvp.wasm.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@duckdb/duckdb-wasm@latest/dist/duckdb-browser-mvp.worker.js"></script>
<script type="module" src="https://cdn.jsdelivr.net/npm/@duckdb/duckdb-wasm@latest/dist/duckdb-browser-mvp.worker.js"></script>
<script src="https://cdn.jsdelivr.net/npm/vega@5"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-lite@5"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-embed@6"></script>
</head>
<body>
<div class="container">
<h1>πŸ“Š Parquet Visualization Studio</h1>
<p class="subtitle">Visualize parquet files with interactive charts</p>
<form id="queryForm">
<div class="form-group">
<label for="urlSelect">Select Example Dataset</label>
<select id="urlSelect">
<option value="">-- Choose a dataset or enter custom URL below --</option>
<option value="https://huggingface.co/datasets/PleIAs/SYNTH/resolve/refs%2Fconvert%2Fparquet/default/partial-train/0000.parquet">PleIAs/SYNTH</option>
<option value="https://huggingface.co/datasets/facebook/omnilingual-asr-corpus/resolve/refs%2Fconvert%2Fparquet/gby_Latn/train/0000.parquet">facebook/omnilingual-asr-corpus</option>
<option value="https://example.com/dataset3.parquet">Dataset 3</option>
<option value="https://example.com/dataset4.parquet">Dataset 4</option>
<option value="https://example.com/dataset5.parquet">Dataset 5</option>
<option value="https://example.com/dataset6.parquet">Dataset 6</option>
<option value="https://example.com/dataset7.parquet">Dataset 7</option>
<option value="https://example.com/dataset8.parquet">Dataset 8</option>
<option value="https://example.com/dataset9.parquet">Dataset 9</option>
<option value="https://example.com/dataset10.parquet">Dataset 10</option>
</select>
</div>
<div class="form-group">
<label for="parquetUrl">Parquet File URL</label>
<input
type="text"
id="parquetUrl"
placeholder="https://example.com/data.parquet"
required
/>
</div>
<button type="submit" id="submitBtn">Load Dataset</button>
</form>
<div id="status" class="status"></div>
<div id="visualizationSection" class="visualization-section" style="display: none;">
<h2>Create Visualization</h2>
<div class="form-group">
<label for="hfToken">Hugging Face Token (required for LLM)</label>
<input
type="password"
id="hfToken"
placeholder="Enter your HF token with Inference Providers permission"
/>
<small>Get a token from <a href="https://huggingface.co/settings/tokens" target="_blank">HF Settings</a> with "Make calls to Inference Providers" permission</small>
</div>
<div class="form-group">
<label for="vizPrompt">Describe the visualization you want</label>
<textarea
id="vizPrompt"
rows="3"
placeholder="e.g., Show a scatter plot of price vs quantity, Create a bar chart showing count by category..."
></textarea>
</div>
<button type="button" id="generateVizBtn">Generate Visualization</button>
<div id="vizContainer" class="viz-container"></div>
</div>
</div>
<script type="module">
import * as duckdb from 'https://cdn.jsdelivr.net/npm/@duckdb/duckdb-wasm@latest/+esm';
let db = null;
let conn = null;
let currentDatasetUrl = null;
let columnInfo = [];
// Initialize DuckDB
async function initDuckDB() {
const JSDELIVR_BUNDLES = duckdb.getJsDelivrBundles();
const bundle = await duckdb.selectBundle(JSDELIVR_BUNDLES);
const worker_url = URL.createObjectURL(
new Blob([`importScripts("${bundle.mainWorker}");`], { type: 'text/javascript' })
);
const worker = new Worker(worker_url);
const logger = new duckdb.ConsoleLogger();
db = new duckdb.AsyncDuckDB(logger, worker);
await db.instantiate(bundle.mainModule, bundle.pthreadWorker);
URL.revokeObjectURL(worker_url);
conn = await db.connect();
}
// Update status message
function setStatus(message, type = 'info') {
const statusEl = document.getElementById('status');
statusEl.textContent = message;
statusEl.className = `status status-${type}`;
statusEl.style.display = 'block';
}
// Determine if a DuckDB type is a complex type (struct, list, map, etc.)
function isComplexType(type) {
const complexTypes = ['STRUCT', 'LIST', 'MAP', 'UNION', 'ARRAY'];
return complexTypes.some(t => type.toUpperCase().startsWith(t));
}
// Determine if a DuckDB type is numeric
function isNumericType(type) {
// First check if it's a complex type
if (isComplexType(type)) return false;
const numericTypes = ['TINYINT', 'SMALLINT', 'INTEGER', 'BIGINT', 'HUGEINT',
'FLOAT', 'DOUBLE', 'DECIMAL', 'NUMERIC', 'REAL'];
return numericTypes.some(t => type.toUpperCase().startsWith(t));
}
// Determine if a DuckDB type is text
function isTextType(type) {
// First check if it's a complex type
if (isComplexType(type)) return false;
const textTypes = ['VARCHAR', 'CHAR', 'TEXT', 'STRING'];
return textTypes.some(t => type.toUpperCase().startsWith(t));
}
// Load dataset: initialize DuckDB, drop old file, and register new parquet file
async function loadDataset(url) {
// Initialize DuckDB if not already done
if (!db) {
await initDuckDB();
}
// Drop existing file registration if it exists
try {
await db.dropFile('data.parquet');
} catch {}
// Register the parquet file from URL
await db.registerFileURL(
'data.parquet',
url,
duckdb.DuckDBDataProtocol.HTTP,
false
);
}
// Detect columns and their types from the dataset
async function detectColumns(url) {
try {
setStatus('Detecting column types...', 'info');
// Load the dataset
await loadDataset(url);
// Query to get column information
const result = await conn.query("DESCRIBE 'data.parquet'");
const rows = result.toArray();
columnInfo = rows.map(row => ({
name: row.column_name,
type: row.column_type
}));
setStatus(`Detected ${columnInfo.length} columns`, 'success');
showVisualizationSection();
} catch (error) {
console.error('Error detecting columns:', error);
setStatus(`Error detecting columns: ${error.message}`, 'error');
columnInfo = [];
}
}
// Show visualization section after dataset is loaded
function showVisualizationSection() {
const vizSection = document.getElementById('visualizationSection');
if (columnInfo.length > 0) {
vizSection.style.display = 'block';
} else {
vizSection.style.display = 'none';
setStatus('No columns found in dataset', 'error');
}
}
// Handle form submission
async function handleSubmit(e) {
e.preventDefault();
const parquetUrl = document.getElementById('parquetUrl').value.trim();
const submitBtn = document.getElementById('submitBtn');
if (!parquetUrl) {
setStatus('Please provide a parquet URL.', 'error');
return;
}
try {
submitBtn.disabled = true;
submitBtn.textContent = 'Loading...';
// Load dataset and detect columns
currentDatasetUrl = parquetUrl;
await detectColumns(parquetUrl);
} catch (error) {
console.error('Error:', error);
setStatus(`Error: ${error.message}`, 'error');
} finally {
submitBtn.disabled = false;
submitBtn.textContent = 'Load Dataset';
}
}
// Handle dropdown selection
document.getElementById('urlSelect').addEventListener('change', async function(e) {
const selectedUrl = e.target.value;
if (selectedUrl) {
document.getElementById('parquetUrl').value = selectedUrl;
currentDatasetUrl = selectedUrl;
await detectColumns(selectedUrl);
}
});
// Handle manual URL input (detect when user blurs or presses enter)
document.getElementById('parquetUrl').addEventListener('blur', async function(e) {
const url = e.target.value.trim();
if (url && url !== currentDatasetUrl) {
currentDatasetUrl = url;
await detectColumns(url);
}
});
// Generate Vega-Lite spec using LLM
async function generateVisualization(prompt, hfToken) {
const vizContainer = document.getElementById('vizContainer');
vizContainer.innerHTML = '';
try {
setStatus('Generating visualization with LLM...', 'info');
// Prepare column information for the LLM
const columnDescriptions = columnInfo.map(col => `- ${col.name}: ${col.type}`).join('\n');
// Create system prompt
const systemPrompt = `You are a data visualization assistant that generates Vega-Lite specifications.
Available dataset columns:
${columnDescriptions}
Instructions:
1. Generate a valid Vega-Lite v5 specification based on the user's request
2. Use ONLY columns that exist in the dataset above
3. The data will be provided as an array of objects in the "data.values" field
4. Output ONLY the JSON specification, no explanations or markdown
5. Do not include the data itself, just reference fields by name
6. Include appropriate width and height (e.g., 600x400)
7. Make sure the spec is complete and valid
Output only the JSON spec starting with { and ending with }.`;
// Call HF Inference API
const response = await fetch(
"https://router.huggingface.co/v1/chat/completions",
{
method: "POST",
headers: {
Authorization: `Bearer ${hfToken}`,
"Content-Type": "application/json",
},
body: JSON.stringify({
model: "deepseek-ai/DeepSeek-R1",
messages: [
{
role: "system",
content: systemPrompt
},
{
role: "user",
content: prompt
}
],
temperature: 0.7,
max_tokens: 2000
}),
}
);
if (!response.ok) {
throw new Error(`API request failed: ${response.status} ${response.statusText}`);
}
const data = await response.json();
const vegaSpec = data.choices[0].message.content;
// Parse and validate the Vega-Lite spec
let spec;
try {
// Try to extract JSON if wrapped in markdown code blocks
let jsonStr = vegaSpec.trim();
if (jsonStr.startsWith('```')) {
jsonStr = jsonStr.replace(/```json\n?/g, '').replace(/```\n?/g, '');
}
spec = JSON.parse(jsonStr);
} catch (e) {
throw new Error(`Failed to parse LLM response as JSON: ${e.message}`);
}
// Fetch data for the visualization
setStatus('Fetching data for visualization...', 'info');
const query = `SELECT * FROM 'data.parquet' LIMIT 1000`;
const result = await conn.query(query);
const dataArray = result.toArray();
// Inject data into the spec
spec.data = { values: dataArray };
// Render the visualization
setStatus('Rendering visualization...', 'info');
await vegaEmbed('#vizContainer', spec);
setStatus('Visualization generated successfully!', 'success');
} catch (error) {
console.error('Error generating visualization:', error);
setStatus(`Error: ${error.message}`, 'error');
}
}
// Handle generate visualization button
document.getElementById('generateVizBtn').addEventListener('click', async function() {
const prompt = document.getElementById('vizPrompt').value.trim();
const hfToken = document.getElementById('hfToken').value.trim();
if (!prompt) {
setStatus('Please enter a visualization prompt', 'error');
return;
}
if (!hfToken) {
setStatus('Please enter your Hugging Face token', 'error');
return;
}
await generateVisualization(prompt, hfToken);
});
// Set up event listeners
document.getElementById('queryForm').addEventListener('submit', handleSubmit);
// Initialize on load
setStatus('Ready to query parquet files!', 'success');
</script>
</body>
</html>