Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from matplotlib import gridspec | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from torch import nn | |
| from PIL import Image | |
| from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation | |
| feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic") | |
| model = SegformerForSemanticSegmentation.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic") | |
| def sidewalk_palette(): | |
| """Sidewalk palette that maps each class to RGB values.""" | |
| return [ | |
| [0, 0, 0], | |
| [216, 82, 24], | |
| [255, 255, 0], | |
| [125, 46, 141], | |
| [118, 171, 47], | |
| [161, 19, 46], | |
| [255, 0, 0], | |
| [0, 128, 128], | |
| [190, 190, 0], | |
| [0, 255, 0], | |
| [0, 0, 255], | |
| [170, 0, 255], | |
| [84, 84, 0], | |
| [84, 170, 0], | |
| [84, 255, 0], | |
| [170, 84, 0], | |
| [170, 170, 0], | |
| [170, 255, 0], | |
| [255, 84, 0], | |
| [255, 170, 0], | |
| [255, 255, 0], | |
| [33, 138, 200], | |
| [0, 170, 127], | |
| [0, 255, 127], | |
| [84, 0, 127], | |
| [84, 84, 127], | |
| [84, 170, 127], | |
| [84, 255, 127], | |
| [170, 0, 127], | |
| [170, 84, 127], | |
| [170, 170, 127], | |
| [170, 255, 127], | |
| [255, 0, 127], | |
| [255, 84, 127], | |
| [255, 170, 127], | |
| ] | |
| labels_list = [] | |
| with open(r'labels.txt', 'r') as fp: | |
| labels_list.extend(line[:-1] for line in fp) | |
| colormap = np.asarray(sidewalk_palette()) | |
| def label_to_color_image(label): | |
| if label.ndim != 2: | |
| raise ValueError("Expect 2-D input label") | |
| if np.max(label) >= len(colormap): | |
| raise ValueError("label value too large.") | |
| return colormap[label] | |
| def draw_plot(pred_img, seg): | |
| fig = plt.figure(figsize=(20, 15)) | |
| grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | |
| plt.subplot(grid_spec[0]) | |
| plt.imshow(pred_img) | |
| plt.axis('off') | |
| LABEL_NAMES = np.asarray(labels_list) | |
| FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | |
| FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | |
| unique_labels = np.unique(seg.numpy().astype("uint8")) | |
| ax = plt.subplot(grid_spec[1]) | |
| plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | |
| ax.yaxis.tick_right() | |
| plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | |
| plt.xticks([], []) | |
| ax.tick_params(width=0.0, labelsize=25) | |
| return fig | |
| def main(input_img): | |
| input_img = Image.fromarray(input_img) | |
| inputs = feature_extractor(images=input_img, return_tensors="pt") | |
| outputs = model(**inputs) | |
| logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) | |
| # First, rescale logits to original image size | |
| upsampled_logits = nn.functional.interpolate( | |
| logits, | |
| size=input_img.size[::-1], # (height, width) | |
| mode='bilinear', | |
| align_corners=False | |
| ) | |
| # Second, apply argmax on the class dimension | |
| pred_seg = upsampled_logits.argmax(dim=1)[0] | |
| color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) # height, width, 3 | |
| palette = np.array(sidewalk_palette()) | |
| for label, color in enumerate(palette): | |
| color_seg[pred_seg == label, :] = color | |
| # Show image + mask | |
| img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
| pred_img = img.astype(np.uint8) | |
| return draw_plot(pred_img, pred_seg) | |
| demo = gr.Interface(main, | |
| gr.Image(shape=(200, 200)), | |
| outputs=['plot'], | |
| examples=["test.jpg"], | |
| allow_flagging='never') | |
| demo.launch() | |