--- license: mit language: - en - zh - ja tags: - speech - singing - singing voice - audio - music - vocoder - codec - pytorch --- ## Aliasing-Free Neural Audio Synthesis This is the official Hugging Face model repository for the paper **"[Aliasing-Free Neural Audio Synthesis](https://arxiv.org/abs/2512.20211)"**, which is the first work to achieve simple and efficient aliasing-free upsampling-based neural audio generation in the entire field of neural vocoders and codecs. For more details, please visit our [GitHub Repository](https://github.com/sizigi/AliasingFreeNeuralAudioSynthesis). ## Model Checkpoints This repository contains the following checkpoints: | Model Name | Directory | Description | | ----------------- | ---------------------------- | ------------------------------------------------- | | **Pupu-Vocoder_Small** | `./pupuvocoder/*` | 14M parameter small version of Pupu-Vocoder. | | **Pupu-Vocoder_Large** | `./pupuvocoder_large/*` | 122M parameter large version of Pupu-Vocoder. | | **Pupu-Codec_Small** | `./pupucodec/*` | 32M parameter small version of Pupu-Codec. | | **Pupu-Codec_Large** | `./pupucodec_large/*` | 119M parameter large version of Pupu-Codec. | ## How to use You need to put the pretrained models in: ```bash AliasingFreeNeuralAudioSynthesis/experiments ``` of our official repository, and then follow the instructions written in the repository to resume, finetune, and inference our pretrained checkpoints. ## Citation ```bibtex @article{afgen, title = {Aliasing Free Neural Audio Synthesis}, author = {Yicheng Gu and Junan Zhang and Chaoren Wang and Jerry Li and Zhizheng Wu and Lauri Juvela}, year = {2025}, journal = {arXiv:2512.20211}, } ```