File size: 28,356 Bytes
6021dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import mxnet as mx
import mxnet.ndarray as nd
import nowcasting.config as cfg
from nowcasting.ops import reset_regs
from nowcasting.operators.common import grid_generator
from nowcasting.operators import *
from nowcasting.ops import *
from nowcasting.prediction_base_factory import PredictionBaseFactory
from nowcasting.operators.transformations import DFN
from nowcasting.my_module import MyModule


def get_encoder_forecaster_rnn_blocks(batch_size):
    encoder_rnn_blocks = []
    forecaster_rnn_blocks = []
    gan_rnn_blocks = []
    CONFIG = cfg.MODEL.ENCODER_FORECASTER.RNN_BLOCKS
    for vec, block_prefix in [(encoder_rnn_blocks, "ebrnn"),
                              (forecaster_rnn_blocks, "fbrnn"),
                              (gan_rnn_blocks, "dbrnn")]:
        for i in range(len(CONFIG.NUM_FILTER)):
            name = "%s%d" % (block_prefix, i + 1)
            if CONFIG.LAYER_TYPE[i] == "ConvGRU":
                rnn_block = BaseStackRNN(base_rnn_class=ConvGRU,
                                         stack_num=CONFIG.STACK_NUM[i],
                                         name=name,
                                         residual_connection=CONFIG.RES_CONNECTION,
                                         num_filter=CONFIG.NUM_FILTER[i],
                                         b_h_w=(batch_size,
                                                cfg.MODEL.ENCODER_FORECASTER.FEATMAP_SIZE[i],
                                                cfg.MODEL.ENCODER_FORECASTER.FEATMAP_SIZE[i]),
                                         h2h_kernel=CONFIG.H2H_KERNEL[i],
                                         h2h_dilate=CONFIG.H2H_DILATE[i],
                                         i2h_kernel=CONFIG.I2H_KERNEL[i],
                                         i2h_pad=CONFIG.I2H_PAD[i],
                                         act_type=cfg.MODEL.RNN_ACT_TYPE)
            elif CONFIG.LAYER_TYPE[i] == "TrajGRU":
                rnn_block = BaseStackRNN(base_rnn_class=TrajGRU,
                                         stack_num=CONFIG.STACK_NUM[i],
                                         name=name,
                                         L=CONFIG.L[i],
                                         residual_connection=CONFIG.RES_CONNECTION,
                                         num_filter=CONFIG.NUM_FILTER[i],
                                         b_h_w=(batch_size,
                                                cfg.MODEL.ENCODER_FORECASTER.FEATMAP_SIZE[i],
                                                cfg.MODEL.ENCODER_FORECASTER.FEATMAP_SIZE[i]),
                                         h2h_kernel=CONFIG.H2H_KERNEL[i],
                                         h2h_dilate=CONFIG.H2H_DILATE[i],
                                         i2h_kernel=CONFIG.I2H_KERNEL[i],
                                         i2h_pad=CONFIG.I2H_PAD[i],
                                         act_type=cfg.MODEL.RNN_ACT_TYPE)
            else:
                raise NotImplementedError
            vec.append(rnn_block)
    return encoder_rnn_blocks, forecaster_rnn_blocks, gan_rnn_blocks

class EncoderForecasterBaseFactory(PredictionBaseFactory):
    def __init__(self,
                 batch_size,
                 in_seq_len,
                 out_seq_len,
                 height,
                 width,
                 ctx_num=1,
                 name="encoder_forecaster"):
        super(EncoderForecasterBaseFactory, self).__init__(batch_size=batch_size,
                                                           in_seq_len=in_seq_len,
                                                           out_seq_len=out_seq_len,
                                                           height=height,
                                                           width=width,
                                                           name=name)
        self._ctx_num = ctx_num

    def _init_rnn(self):
        self._encoder_rnn_blocks, self._forecaster_rnn_blocks, self._gan_rnn_blocks =\
            get_encoder_forecaster_rnn_blocks(batch_size=self._batch_size)
        return self._encoder_rnn_blocks + self._forecaster_rnn_blocks + self._gan_rnn_blocks

    @property
    def init_encoder_state_info(self):
        init_state_info = []
        for block in self._encoder_rnn_blocks:
            for state in block.init_state_vars():
                init_state_info.append({'name': state.name,
                                        'shape': state.attr('__shape__'),
                                        '__layout__': state.list_attr()['__layout__']})
        return init_state_info

    @property
    def init_forecaster_state_info(self):
        init_state_info = []
        for block in self._forecaster_rnn_blocks:
            for state in block.init_state_vars():
                init_state_info.append({'name': state.name,
                                        'shape': state.attr('__shape__'),
                                        '__layout__': state.list_attr()['__layout__']})
        return init_state_info

    @property
    def init_gan_state_info(self):
        init_gan_state_info = []
        for block in self._gan_rnn_blocks:
            for state in block.init_state_vars():
                init_gan_state_info.append({'name': state.name,
                                            'shape': state.attr('__shape__'),
                                            '__layout__': state.list_attr()['__layout__']})
        return init_gan_state_info

    def stack_rnn_encode(self, data):
        CONFIG = cfg.MODEL.ENCODER_FORECASTER
        pre_encoded_data = self._pre_encode_frame(frame_data=data, seqlen=self._in_seq_len)
        reshape_data = mx.sym.Reshape(pre_encoded_data, shape=(-1, 0, 0, 0), reverse=True)

        # Encoder Part
        conv1 = conv2d_act(data=reshape_data,
                           num_filter=CONFIG.FIRST_CONV[0],
                           kernel=(CONFIG.FIRST_CONV[1], CONFIG.FIRST_CONV[1]),
                           stride=(CONFIG.FIRST_CONV[2], CONFIG.FIRST_CONV[2]),
                           pad=(CONFIG.FIRST_CONV[3], CONFIG.FIRST_CONV[3]),
                           act_type=cfg.MODEL.CNN_ACT_TYPE,
                           name="econv1")
        rnn_block_num = len(CONFIG.RNN_BLOCKS.NUM_FILTER)
        encoder_rnn_block_states = []
        for i in range(rnn_block_num):
            if i == 0:
                inputs = conv1
            else:
                inputs = downsample
            rnn_out, states = self._encoder_rnn_blocks[i].unroll(
                length=self._in_seq_len,
                inputs=inputs,
                begin_states=None,
                ret_mid=False)
            encoder_rnn_block_states.append(states)
            if i < rnn_block_num - 1:
                downsample = downsample_module(data=rnn_out[-1],
                                               num_filter=CONFIG.RNN_BLOCKS.NUM_FILTER[i + 1],
                                               kernel=(CONFIG.DOWNSAMPLE[i][0],
                                                       CONFIG.DOWNSAMPLE[i][0]),
                                               stride=(CONFIG.DOWNSAMPLE[i][1],
                                                       CONFIG.DOWNSAMPLE[i][1]),
                                               pad=(CONFIG.DOWNSAMPLE[i][2],
                                                    CONFIG.DOWNSAMPLE[i][2]),
                                               b_h_w=(self._batch_size,
                                                      CONFIG.FEATMAP_SIZE[i + 1],
                                                      CONFIG.FEATMAP_SIZE[i + 1]),
                                               name="edown%d" %(i + 1))
        return encoder_rnn_block_states

    def stack_rnn_forecast(self, block_state_list, last_frame):
        CONFIG = cfg.MODEL.ENCODER_FORECASTER
        block_state_list = [self._forecaster_rnn_blocks[i].to_split(block_state_list[i])
                            for i in range(len(self._forecaster_rnn_blocks))]
        rnn_block_num = len(CONFIG.RNN_BLOCKS.NUM_FILTER)
        rnn_block_outputs = []
        # RNN Forecaster Part
        curr_inputs = None
        for i in range(rnn_block_num - 1, -1, -1):
            rnn_out, rnn_state = self._forecaster_rnn_blocks[i].unroll(
                length=self._out_seq_len, inputs=curr_inputs,
                begin_states=block_state_list[i][::-1],  # Reverse the order of states for the forecaster
                ret_mid=False)
            rnn_block_outputs.append(rnn_out)
            if i > 0:
                upsample = upsample_module(data=rnn_out[-1],
                                           num_filter=CONFIG.RNN_BLOCKS.NUM_FILTER[i],
                                           kernel=(CONFIG.UPSAMPLE[i - 1][0],
                                                   CONFIG.UPSAMPLE[i - 1][0]),
                                           stride=(CONFIG.UPSAMPLE[i - 1][1],
                                                   CONFIG.UPSAMPLE[i - 1][1]),
                                           pad=(CONFIG.UPSAMPLE[i - 1][2],
                                                CONFIG.UPSAMPLE[i - 1][2]),
                                           b_h_w=(self._batch_size, CONFIG.FEATMAP_SIZE[i - 1]),
                                           name="fup%d" %i)
                curr_inputs = upsample
        # Output
        if cfg.MODEL.OUT_TYPE == "DFN":
            concat_fbrnn1_out = mx.sym.concat(*rnn_out[-1], dim=0)
            dynamic_filter = deconv2d(data=concat_fbrnn1_out,
                                      num_filter=121,
                                      kernel=(CONFIG.LAST_DECONV[1], CONFIG.LAST_DECONV[1]),
                                      stride=(CONFIG.LAST_DECONV[2], CONFIG.LAST_DECONV[2]),
                                      pad=(CONFIG.LAST_DECONV[3], CONFIG.LAST_DECONV[3]))
            flow = dynamic_filter
            dynamic_filter = mx.sym.SliceChannel(dynamic_filter, axis=0, num_outputs=self._out_seq_len)
            prev_frame = last_frame
            preds = []
            for i in range(self._out_seq_len):
                pred_ele = DFN(data=prev_frame, local_kernels=dynamic_filter[i], K=11, batch_size=self._batch_size)
                preds.append(pred_ele)
                prev_frame = pred_ele
            pred = mx.sym.concat(*preds, dim=0)
        elif cfg.MODEL.OUT_TYPE == "direct":
            flow = None
            deconv1 = deconv2d_act(data=mx.sym.concat(*rnn_out[-1], dim=0),
                                   num_filter=CONFIG.LAST_DECONV[0],
                                   kernel=(CONFIG.LAST_DECONV[1], CONFIG.LAST_DECONV[1]),
                                   stride=(CONFIG.LAST_DECONV[2], CONFIG.LAST_DECONV[2]),
                                   pad=(CONFIG.LAST_DECONV[3], CONFIG.LAST_DECONV[3]),
                                   act_type=cfg.MODEL.CNN_ACT_TYPE,
                                   name="fdeconv1")
            conv_final = conv2d_act(data=deconv1,
                                    num_filter=CONFIG.LAST_DECONV[0],
                                    kernel=(3, 3), stride=(1, 1), pad=(1, 1),
                                    act_type=cfg.MODEL.CNN_ACT_TYPE, name="conv_final")
            pred = conv2d(data=conv_final,
                          num_filter=1, kernel=(1, 1), name="out")
        else:
            raise NotImplementedError
        pred = mx.sym.Reshape(pred,
                              shape=(self._out_seq_len, self._batch_size,
                                     1, self._height, self._width),
                              __layout__="TNCHW")
        return pred, flow

    def encoder_sym(self):
        self.reset_all()
        data = mx.sym.Variable('data')  # Shape: (in_seq_len, batch_size, C, H, W)
        block_state_list = self.stack_rnn_encode(data=data)
        states = []
        for i, rnn_block in enumerate(self._encoder_rnn_blocks):
            states.extend(rnn_block.flatten_add_layout(block_state_list[i]))
        return mx.sym.Group(states)

    def encoder_data_desc(self):
        ret = list()
        ret.append(mx.io.DataDesc(name='data',
                                  shape=(self._in_seq_len,
                                         self._batch_size * self._ctx_num,
                                         1,
                                         self._height,
                                         self._width),
                                  layout="TNCHW"))
        for info in self.init_encoder_state_info:
            state_shape = safe_eval(info['shape'])
            assert info['__layout__'].find('N') == 0,\
                "Layout=%s is not supported!" %info["__layout__"]
            state_shape = (state_shape[0] * self._ctx_num, ) + state_shape[1:]
            ret.append(mx.io.DataDesc(name=info['name'],
                                      shape=state_shape,
                                      layout=info['__layout__']))
        return ret

    def forecaster_sym(self):
        self.reset_all()
        block_state_list = []
        for block in self._forecaster_rnn_blocks:
            block_state_list.append(block.init_state_vars())

        if cfg.MODEL.OUT_TYPE == "direct":
            pred, _ = self.stack_rnn_forecast(block_state_list=block_state_list,
                                              last_frame=None)
            return mx.sym.Group([pred])
        else:
            last_frame = mx.sym.Variable('last_frame')  # Shape: (batch_size, C, H, W)
            pred, flow = self.stack_rnn_forecast(block_state_list=block_state_list,
                                                 last_frame=last_frame)
            return mx.sym.Group([pred, mx.sym.BlockGrad(flow)])

    def forecaster_data_desc(self):
        ret = list()
        for info in self.init_forecaster_state_info:
            state_shape = safe_eval(info['shape'])
            assert info['__layout__'].find('N') == 0, \
                "Layout=%s is not supported!" % info["__layout__"]
            state_shape = (state_shape[0] * self._ctx_num,) + state_shape[1:]
            ret.append(mx.io.DataDesc(name=info['name'],
                                      shape=state_shape,
                                      layout=info['__layout__']))
        if cfg.MODEL.OUT_TYPE != "direct":
            ret.append(mx.io.DataDesc(name="last_frame",
                                      shape=(self._ctx_num * self._batch_size,
                                             1, self._height, self._width),
                                      layout="NCHW"))
        return ret

    def loss_sym(self):
        raise NotImplementedError

    def loss_data_desc(self):
        ret = list()
        ret.append(mx.io.DataDesc(name='pred',
                                  shape=(self._out_seq_len,
                                         self._ctx_num * self._batch_size,
                                         1,
                                         self._height,
                                         self._width),
                                  layout="TNCHW"))
        return ret

    def loss_label_desc(self):
        ret = list()
        ret.append(mx.io.DataDesc(name='target',
                                  shape=(self._out_seq_len,
                                         self._ctx_num * self._batch_size,
                                         1,
                                         self._height,
                                         self._width),
                                  layout="TNCHW"))
        if cfg.MODEL.ENCODER_FORECASTER.HAS_MASK:
            ret.append(mx.io.DataDesc(name='mask',
                                      shape=(self._out_seq_len,
                                             self._ctx_num * self._batch_size,
                                             1,
                                             self._height,
                                             self._width),
                                      layout="TNCHW"))
        return ret



def init_optimizer_using_cfg(net, for_finetune):
    if not for_finetune:
        lr_scheduler = mx.lr_scheduler.FactorScheduler(step=cfg.MODEL.TRAIN.LR_DECAY_ITER,
                                                       factor=cfg.MODEL.TRAIN.LR_DECAY_FACTOR,
                                                       stop_factor_lr=cfg.MODEL.TRAIN.MIN_LR)
        if cfg.MODEL.TRAIN.OPTIMIZER.lower() == "adam":
            net.init_optimizer(optimizer="adam",
                               optimizer_params={'learning_rate': cfg.MODEL.TRAIN.LR,
                                                 'beta1': cfg.MODEL.TRAIN.BETA1,
                                                 'rescale_grad': 1.0,
                                                 'epsilon': cfg.MODEL.TRAIN.EPS,
                                                 'lr_scheduler': lr_scheduler,
                                                 'wd': cfg.MODEL.TRAIN.WD})
        elif cfg.MODEL.TRAIN.OPTIMIZER.lower() == "rmsprop":
            net.init_optimizer(optimizer="rmsprop",
                               optimizer_params={'learning_rate': cfg.MODEL.TRAIN.LR,
                                                 'gamma1': cfg.MODEL.TRAIN.GAMMA1,
                                                 'rescale_grad': 1.0,
                                                 'epsilon': cfg.MODEL.TRAIN.EPS,
                                                 'lr_scheduler': lr_scheduler,
                                                 'wd': cfg.MODEL.TRAIN.WD})
        elif cfg.MODEL.TRAIN.OPTIMIZER.lower() == "sgd":
            net.init_optimizer(optimizer="sgd",
                               optimizer_params={'learning_rate': cfg.MODEL.TRAIN.LR,
                                                 'momentum': 0.0,
                                                 'rescale_grad': 1.0,
                                                 'lr_scheduler': lr_scheduler,
                                                 'wd': cfg.MODEL.TRAIN.WD})
        elif cfg.MODEL.TRAIN.OPTIMIZER.lower() == "adagrad":
            net.init_optimizer(optimizer="adagrad",
                               optimizer_params={'learning_rate': cfg.MODEL.TRAIN.LR,
                                                 'eps': cfg.MODEL.TRAIN.EPS,
                                                 'rescale_grad': 1.0,
                                                 'wd': cfg.MODEL.TRAIN.WD})
        else:
            raise NotImplementedError
    else:
        if cfg.MODEL.TEST.ONLINE.OPTIMIZER.lower() == "adam":
            net.init_optimizer(optimizer="adam",
                               optimizer_params={'learning_rate': cfg.MODEL.TEST.ONLINE.LR,
                                                 'beta1': cfg.MODEL.TEST.ONLINE.BETA1,
                                                 'rescale_grad': 1.0,
                                                 'epsilon': cfg.MODEL.TEST.ONLINE.EPS,
                                                 'wd': cfg.MODEL.TEST.ONLINE.WD})
        elif cfg.MODEL.TEST.ONLINE.OPTIMIZER.lower() == "rmsprop":
            net.init_optimizer(optimizer="rmsprop",
                               optimizer_params={'learning_rate': cfg.MODEL.TEST.ONLINE.LR,
                                                 'gamma1': cfg.MODEL.TEST.ONLINE.GAMMA1,
                                                 'rescale_grad': 1.0,
                                                 'epsilon': cfg.MODEL.TEST.ONLINE.EPS,
                                                 'wd': cfg.MODEL.TEST.ONLINE.WD})
        elif cfg.MODEL.TEST.ONLINE.OPTIMIZER.lower() == "sgd":
            net.init_optimizer(optimizer="sgd",
                               optimizer_params={'learning_rate': cfg.MODEL.TEST.ONLINE.LR,
                                                 'momentum': 0.0,
                                                 'rescale_grad': 1.0,
                                                 'wd': cfg.MODEL.TEST.ONLINE.WD})
        elif cfg.MODEL.TEST.ONLINE.OPTIMIZER.lower() == "adagrad":
            net.init_optimizer(optimizer="adagrad",
                               optimizer_params={'learning_rate': cfg.MODEL.TEST.ONLINE.LR,
                                                 'eps': cfg.MODEL.TRAIN.EPS,
                                                 'rescale_grad': 1.0,
                                                 'wd': cfg.MODEL.TEST.ONLINE.WD})
    return net


def encoder_forecaster_build_networks(factory, context,
                                      shared_encoder_net=None,
                                      shared_forecaster_net=None,
                                      shared_loss_net=None,
                                      for_finetune=False):
    """
    
    Parameters
    ----------
    factory : EncoderForecasterBaseFactory
    context : list
    shared_encoder_net : MyModule or None
    shared_forecaster_net : MyModule or None
    shared_loss_net : MyModule or None
    for_finetune : bool

    Returns
    -------

    """
    encoder_net = MyModule(factory.encoder_sym(),
                           data_names=[ele.name for ele in factory.encoder_data_desc()],
                           label_names=[],
                           context=context,
                           name="encoder_net")
    encoder_net.bind(data_shapes=factory.encoder_data_desc(),
                     label_shapes=None,
                     inputs_need_grad=True,
                     shared_module=shared_encoder_net)
    if shared_encoder_net is None:
        encoder_net.init_params(mx.init.MSRAPrelu(slope=0.2))
        init_optimizer_using_cfg(encoder_net, for_finetune=for_finetune)
    forecaster_net = MyModule(factory.forecaster_sym(),
                                   data_names=[ele.name for ele in
                                               factory.forecaster_data_desc()],
                                   label_names=[],
                                   context=context,
                                   name="forecaster_net")
    forecaster_net.bind(data_shapes=factory.forecaster_data_desc(),
                        label_shapes=None,
                        inputs_need_grad=True,
                        shared_module=shared_forecaster_net)
    if shared_forecaster_net is None:
        forecaster_net.init_params(mx.init.MSRAPrelu(slope=0.2))
        init_optimizer_using_cfg(forecaster_net, for_finetune=for_finetune)

    loss_net = MyModule(factory.loss_sym(),
                        data_names=[ele.name for ele in
                                    factory.loss_data_desc()],
                        label_names=[ele.name for ele in
                                     factory.loss_label_desc()],
                        context=context,
                        name="loss_net")
    loss_net.bind(data_shapes=factory.loss_data_desc(),
                  label_shapes=factory.loss_label_desc(),
                  inputs_need_grad=True,
                  shared_module=shared_loss_net)
    if shared_loss_net is None:
        loss_net.init_params()
    return encoder_net, forecaster_net, loss_net


class EncoderForecasterStates(object):
    def __init__(self, factory, ctx):
        self._factory = factory
        self._ctx = ctx
        self._encoder_state_info = factory.init_encoder_state_info
        self._forecaster_state_info = factory.init_forecaster_state_info
        self._states_nd = []
        for info in self._encoder_state_info:
            state_shape = safe_eval(info['shape'])
            state_shape = (state_shape[0] * factory._ctx_num, ) + state_shape[1:]
            self._states_nd.append(mx.nd.zeros(shape=state_shape, ctx=ctx))

    def reset_all(self):
        for ele, info in zip(self._states_nd, self._encoder_state_info):
            ele[:] = 0

    def reset_batch(self, batch_id):
        for ele, info in zip(self._states_nd, self._encoder_state_info):
            ele[batch_id][:] = 0

    def update(self, states_nd):
        for target, src in zip(self._states_nd, states_nd):
            target[:] = src

    def get_encoder_states(self):
        return self._states_nd

    def get_forecaster_state(self):
        return self._states_nd


def train_step(batch_size, encoder_net, forecaster_net,
               loss_net, init_states,
               data_nd, gt_nd, mask_nd, iter_id=None):
    """Finetune the encoder, forecaster and GAN for one step

    Parameters
    ----------
    batch_size : int
    encoder_net : MyModule
    forecaster_net : MyModule
    loss_net : MyModule
    init_states : EncoderForecasterStates
    data_nd : mx.nd.ndarray
    gt_nd : mx.nd.ndarray
    mask_nd : mx.nd.ndarray
    iter_id : int

    Returns
    -------
    init_states: EncoderForecasterStates
    loss_dict: dict
    """
    # Forward Encoder
    encoder_net.forward(is_train=True,
                        data_batch=mx.io.DataBatch(data=[data_nd] + init_states.get_encoder_states()))
    encoder_states_nd = encoder_net.get_outputs()
    init_states.update(encoder_states_nd)
    # Forward Forecaster
    if cfg.MODEL.OUT_TYPE == "direct":
        forecaster_net.forward(is_train=True,
                               data_batch=mx.io.DataBatch(data=init_states.get_forecaster_state()))
    else:
        last_frame_nd = data_nd[data_nd.shape[0] - 1]
        forecaster_net.forward(is_train=True,
                               data_batch=mx.io.DataBatch(data=init_states.get_forecaster_state() +
                                                                    [last_frame_nd]))
    forecaster_outputs = forecaster_net.get_outputs()
    pred_nd = forecaster_outputs[0]

    # Calculate the gradient of the loss functions
    if cfg.MODEL.ENCODER_FORECASTER.HAS_MASK:
        loss_net.forward_backward(data_batch=mx.io.DataBatch(data=[pred_nd],
                                                             label=[gt_nd, mask_nd]))
    else:
        loss_net.forward_backward(data_batch=mx.io.DataBatch(data=[pred_nd],
                                                             label=[gt_nd]))
    pred_grad = loss_net.get_input_grads()[0]
    loss_dict = loss_net.get_output_dict()
    for k in loss_dict:
        loss_dict[k] = nd.mean(loss_dict[k]).asscalar()
    # Backward Forecaster
    forecaster_net.backward(out_grads=[pred_grad])
    if cfg.MODEL.OUT_TYPE == "direct":
        encoder_states_grad_nd = forecaster_net.get_input_grads()
    else:
        encoder_states_grad_nd = forecaster_net.get_input_grads()[:-1]
    # Backward Encoder
    encoder_net.backward(encoder_states_grad_nd)
    # Update forecaster and encoder
    forecaster_grad_norm = forecaster_net.clip_by_global_norm(max_norm=cfg.MODEL.TRAIN.GRAD_CLIP)
    encoder_grad_norm = encoder_net.clip_by_global_norm(max_norm=cfg.MODEL.TRAIN.GRAD_CLIP)
    forecaster_net.update()
    encoder_net.update()
    loss_str = ", ".join(["%s=%g" %(k, v) for k, v in loss_dict.items()])
    if iter_id is not None:
        logging.info("Iter:%d, %s, e_gnorm=%g, f_gnorm=%g"
                     % (iter_id, loss_str, encoder_grad_norm, forecaster_grad_norm))
    return init_states, loss_dict


def load_encoder_forecaster_params(load_dir, load_iter, encoder_net, forecaster_net):
    logging.info("Loading parameters from {}, Iter = {}"
                 .format(os.path.realpath(load_dir), load_iter))
    encoder_arg_params, encoder_aux_params = load_params(prefix=os.path.join(load_dir,
                                                                             "encoder_net"),
                                                         epoch=load_iter)
    encoder_net.init_params(arg_params=encoder_arg_params, aux_params=encoder_aux_params,
                            allow_missing=False, force_init=True)
    forecaster_arg_params, forecaster_aux_params = load_params(prefix=os.path.join(load_dir,
                                                                             "forecaster_net"),
                                                               epoch=load_iter)
    forecaster_net.init_params(arg_params=forecaster_arg_params,
                               aux_params=forecaster_aux_params,
                               allow_missing=False,
                               force_init=True)
    logging.info("Loading Complete!")