File size: 3,699 Bytes
f94c6d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# coding=utf-8
# Copyright 2025 The SMB Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.configuration_utils import PretrainedConfig


class SMBVisionConfig(PretrainedConfig):
    model_type = "smb_vision_encoder"
    base_config_key = "vision_config"

    def __init__(
        self,
        depth=27,
        hidden_size=1152,
        hidden_act="gelu_pytorch_tanh",
        intermediate_size=4304,
        num_heads=16,
        in_channels=3,
        patch_size=16,
        spatial_merge_size=2,
        temporal_patch_size=2,
        out_hidden_size=3584,
        num_position_embeddings=2304,
        deepstack_visual_indexes=[8, 16, 24],
        initializer_range=0.02,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.depth = depth
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.spatial_merge_size = spatial_merge_size
        self.temporal_patch_size = temporal_patch_size
        self.out_hidden_size = out_hidden_size
        self.num_position_embeddings = num_position_embeddings
        self.initializer_range = initializer_range
        self.deepstack_visual_indexes = deepstack_visual_indexes


class SMBVisionPredictorConfig(PretrainedConfig):
    model_type = "smb_vision_predictor"
    base_config_key = "predictor_config"

    def __init__(
        self,
        depth=27,
        in_hidden_size=1152,
        hidden_size=512,
        hidden_act="gelu_pytorch_tanh",
        intermediate_size=1536,
        num_heads=16,
        in_channels=1,
        initializer_range=0.02,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.depth = depth
        self.in_hidden_size = in_hidden_size
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.initializer_range = initializer_range


class SMBVisionModelConfig(PretrainedConfig):
    model_type = "smb_vision_model"
    sub_configs = {"vision_config": SMBVisionConfig, "predictor_config": SMBVisionPredictorConfig}

    def __init__(
        self,
        vision_config=None,
        predictor_config=None,
        hidden_size=1152,
        masking_ratio=0.1,
        **kwargs,
    ):
        if isinstance(vision_config, dict):
            self.vision_config = self.sub_configs["vision_config"](**vision_config)
        elif vision_config is None:
            self.vision_config = self.sub_configs["vision_config"]()

        if isinstance(predictor_config, dict):
            self.predictor_config = self.sub_configs["predictor_config"](**predictor_config)
        elif predictor_config is None:
            self.predictor_config = self.sub_configs["predictor_config"]()

        self.hidden_size = hidden_size
        self.masking_ratio = masking_ratio

        super().__init__(**kwargs)


__all__ = ["SMBVisionConfig", "SMBVisionPredictorConfig", "SMBVisionModelConfig"]