# coding=utf-8 # Copyright 2025 The SMB Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Callable, Optional import torch import torch.nn as nn import torch.nn.functional as F from transformers.activations import ACT2FN from transformers.modeling_layers import GradientCheckpointingLayer from transformers.modeling_outputs import BaseModelOutput, ModelOutput from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import TransformersKwargs from .configuration_smb_vision import ( SMBVisionConfig, SMBVisionPredictorConfig, SMBVisionModelConfig, ) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand( batch, num_key_value_heads, n_rep, slen, head_dim ) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( query.dtype ) attn_weights = nn.functional.dropout( attn_weights, p=dropout, training=module.training ) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class SMBVisionMLP(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_state): return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state))) class SMBVisionPatchEmbed(nn.Module): def __init__(self, config) -> None: super().__init__() self.patch_size = config.patch_size self.temporal_patch_size = config.temporal_patch_size self.in_channels = config.in_channels self.embed_dim = config.hidden_size kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size] for in_channels in [1, 3, 4]: setattr( self, f"proj_c{in_channels}", nn.Conv3d( in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=True, ), ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: target_dtype = self.proj_c1.weight.dtype if self.in_channels == 1: # grayscale hidden_states = hidden_states.view( -1, 1, self.temporal_patch_size, self.patch_size, self.patch_size ) hidden_states = self.proj_c1(hidden_states.to(dtype=target_dtype)).view( -1, self.embed_dim ) elif self.in_channels == 3: # rgb hidden_states = hidden_states.view( -1, 3, self.temporal_patch_size, self.patch_size, self.patch_size ) hidden_states = self.proj_c3(hidden_states.to(dtype=target_dtype)).view( -1, self.embed_dim ) elif self.in_channels == 4: # multi sequence hidden_states = hidden_states.view( -1, 4, self.temporal_patch_size, self.patch_size, self.patch_size ) hidden_states = self.proj_c4(hidden_states.to(dtype=target_dtype)).view( -1, self.embed_dim ) else: raise ValueError(f"Unsupported number of channels: {self.in_channels}") return hidden_states class SMBVisionRotaryEmbedding(nn.Module): inv_freq: torch.Tensor # fix linting for `register_buffer` def __init__(self, dim: int, theta: float = 10000.0) -> None: super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) def forward(self, seqlen: int) -> torch.Tensor: seq = torch.arange( seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype ) freqs = torch.outer(seq, self.inv_freq) return freqs class SMBVisionPatchMerger(nn.Module): def __init__(self, config, use_postshuffle_norm=False) -> None: super().__init__() self.hidden_size = config.hidden_size * (config.spatial_merge_size**2) self.use_postshuffle_norm = use_postshuffle_norm self.norm = nn.LayerNorm( self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6 ) self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size) self.act_fn = nn.GELU() self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.norm( x.contiguous().view(-1, self.hidden_size) if self.use_postshuffle_norm else x ).view(-1, self.hidden_size) x = self.linear_fc2(self.act_fn(self.linear_fc1(x))) return x def apply_rotary_pos_emb_vision( q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor]: orig_q_dtype = q.dtype orig_k_dtype = k.dtype q, k = q.float(), k.float() cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) q_embed = q_embed.to(orig_q_dtype) k_embed = k_embed.to(orig_k_dtype) return q_embed, k_embed class SMBVisionAttention(nn.Module): def __init__(self, config) -> None: super().__init__() self.dim = config.hidden_size self.num_heads = config.num_heads self.head_dim = self.dim // self.num_heads self.num_key_value_groups = 1 # needed for eager attention self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True) self.proj = nn.Linear(self.dim, self.dim) self.scaling = self.head_dim**-0.5 self.config = config self.attention_dropout = 0.0 self.is_causal = False def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: Optional[torch.Tensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> torch.Tensor: seq_length = hidden_states.shape[0] query_states, key_states, value_states = ( self.qkv(hidden_states) .reshape(seq_length, 3, self.num_heads, -1) .permute(1, 0, 2, 3) .unbind(0) ) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb_vision( query_states, key_states, cos, sin ) query_states = query_states.transpose(0, 1).unsqueeze(0) key_states = key_states.transpose(0, 1).unsqueeze(0) value_states = value_states.transpose(0, 1).unsqueeze(0) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[ self.config._attn_implementation ] if self.config._attn_implementation == "flash_attention_2": # Flash Attention 2: Use cu_seqlens for variable length attention max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max() attn_output, _ = attention_interface( self, query_states, key_states, value_states, attention_mask=None, scaling=self.scaling, dropout=0.0 if not self.training else self.attention_dropout, cu_seq_lens_q=cu_seqlens, cu_seq_lens_k=cu_seqlens, max_length_q=max_seqlen, max_length_k=max_seqlen, is_causal=False, **kwargs, ) else: # Other implementations: Process each chunk separately lengths = cu_seqlens[1:] - cu_seqlens[:-1] splits = [ torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states) ] attn_outputs = [ attention_interface( self, q, k, v, attention_mask=None, scaling=self.scaling, dropout=0.0 if not self.training else self.attention_dropout, is_causal=False, **kwargs, )[0] for q, k, v in zip(*splits) ] attn_output = torch.cat(attn_outputs, dim=1) attn_output = attn_output.reshape(seq_length, -1).contiguous() attn_output = self.proj(attn_output) return attn_output class SMBVisionBlock(GradientCheckpointingLayer): def __init__(self, config, attn_implementation: str = "sdpa") -> None: super().__init__() self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6) self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6) self.attn = SMBVisionAttention(config=config) self.mlp = SMBVisionMLP(config=config) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: Optional[torch.Tensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> torch.Tensor: hidden_states = hidden_states + self.attn( self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb, position_embeddings=position_embeddings, **kwargs, ) hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) return hidden_states class SMBVisionEncoder(PreTrainedModel): config: SMBVisionConfig _no_split_modules = ["SMBVisionBlock"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) _supports_attention_backend = True def __init__(self, config, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.spatial_merge_size = config.spatial_merge_size self.patch_size = config.patch_size self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size self.patch_embed = SMBVisionPatchEmbed( config=config, ) self.pos_embed = nn.Embedding( config.num_position_embeddings, config.hidden_size ) self.num_grid_per_side = int(config.num_position_embeddings**0.5) head_dim = config.hidden_size // config.num_heads self.rotary_pos_emb = SMBVisionRotaryEmbedding(head_dim // 2) self.blocks = nn.ModuleList( [SMBVisionBlock(config) for _ in range(config.depth)] ) self.merger = SMBVisionPatchMerger( config=config, use_postshuffle_norm=False, ) self.deepstack_visual_indexes = config.deepstack_visual_indexes self.deepstack_merger_list = nn.ModuleList( [ SMBVisionPatchMerger( config=config, use_postshuffle_norm=True, ) for _ in range(len(config.deepstack_visual_indexes)) ] ) self.gradient_checkpointing = False def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: merge_size = self.spatial_merge_size max_hw = int(grid_thw[:, 1:].max().item()) freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2) device = freq_table.device total_tokens = int(torch.prod(grid_thw, dim=1).sum().item()) pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device) offset = 0 for num_frames, height, width in grid_thw: merged_h, merged_w = height // merge_size, width // merge_size block_rows = torch.arange(merged_h, device=device) # block row indices block_cols = torch.arange(merged_w, device=device) # block col indices intra_row = torch.arange( merge_size, device=device ) # intra-block row offsets intra_col = torch.arange( merge_size, device=device ) # intra-block col offsets # Compute full-resolution positions row_idx = ( block_rows[:, None, None, None] * merge_size + intra_row[None, None, :, None] ) col_idx = ( block_cols[None, :, None, None] * merge_size + intra_col[None, None, None, :] ) row_idx = row_idx.expand( merged_h, merged_w, merge_size, merge_size ).reshape(-1) col_idx = col_idx.expand( merged_h, merged_w, merge_size, merge_size ).reshape(-1) coords = torch.stack((row_idx, col_idx), dim=-1) if num_frames > 1: coords = coords.repeat(num_frames, 1) num_tokens = coords.shape[0] pos_ids[offset : offset + num_tokens] = coords offset += num_tokens embeddings = freq_table[pos_ids] # lookup rotary embeddings embeddings = embeddings.flatten(1) return embeddings def fast_pos_embed_interpolate(self, grid_thw): grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2] idx_list = [[] for _ in range(4)] weight_list = [[] for _ in range(4)] for t, h, w in zip(grid_ts, grid_hs, grid_ws): h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h) w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w) h_idxs_floor = h_idxs.int() w_idxs_floor = w_idxs.int() h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) dh = h_idxs - h_idxs_floor dw = w_idxs - w_idxs_floor base_h = h_idxs_floor * self.num_grid_per_side base_h_ceil = h_idxs_ceil * self.num_grid_per_side indices = [ (base_h[None].T + w_idxs_floor[None]).flatten(), (base_h[None].T + w_idxs_ceil[None]).flatten(), (base_h_ceil[None].T + w_idxs_floor[None]).flatten(), (base_h_ceil[None].T + w_idxs_ceil[None]).flatten(), ] weights = [ ((1 - dh)[None].T * (1 - dw)[None]).flatten(), ((1 - dh)[None].T * dw[None]).flatten(), (dh[None].T * (1 - dw)[None]).flatten(), (dh[None].T * dw[None]).flatten(), ] for i in range(4): idx_list[i].extend(indices[i].tolist()) weight_list[i].extend(weights[i].tolist()) idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=self.pos_embed.weight.device) weight_tensor = torch.tensor( weight_list, dtype=self.pos_embed.weight.dtype, device=self.pos_embed.weight.device ) pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None] patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3] patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)]) patch_pos_embeds_permute = [] merge_size = self.config.spatial_merge_size for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws): pos_embed = pos_embed.repeat(t, 1) pos_embed = ( pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1) .permute(0, 1, 3, 2, 4, 5) .flatten(0, 4) ) patch_pos_embeds_permute.append(pos_embed) patch_pos_embeds = torch.cat(patch_pos_embeds_permute) return patch_pos_embeds def forward( self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs ) -> torch.Tensor: """ Args: hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): The final hidden states of the model. grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): The temporal, height and width of feature shape of each image in LLM. Returns: `torch.Tensor`: hidden_states. """ hidden_states = self.patch_embed(hidden_states) pos_embeds = self.fast_pos_embed_interpolate(grid_thw) hidden_states = hidden_states + pos_embeds rotary_pos_emb = self.rot_pos_emb(grid_thw) seq_len, _ = hidden_states.size() hidden_states = hidden_states.reshape(seq_len, -1) rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) position_embeddings = (emb.cos(), emb.sin()) cu_seqlens = torch.repeat_interleave( grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0] ).cumsum( dim=0, # Select dtype based on the following factors: # - FA2 requires that cu_seqlens_q must have dtype int32 # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw # See https://github.com/huggingface/transformers/pull/34852 for more information dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, ) cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) deepstack_feature_lists = [] for layer_num, blk in enumerate(self.blocks): hidden_states = blk( hidden_states, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings, **kwargs, ) if layer_num in self.deepstack_visual_indexes: deepstack_feature = self.deepstack_merger_list[ self.deepstack_visual_indexes.index(layer_num) ](hidden_states) deepstack_feature_lists.append(deepstack_feature) # hidden_states = self.merger(hidden_states) return hidden_states, deepstack_feature_lists class SMBVisionPredictor(PreTrainedModel): config: SMBVisionPredictorConfig _no_split_modules = ["SMBVisionBlock"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) _supports_attention_backend = True def __init__(self, config, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) head_dim = config.hidden_size // config.num_heads self.rotary_pos_emb = SMBVisionRotaryEmbedding(head_dim // 2) self.blocks = nn.ModuleList( [SMBVisionBlock(config) for _ in range(config.depth)] ) self.in_proj = nn.Linear(config.in_hidden_size, config.hidden_size) self.out_proj = nn.Linear(config.hidden_size, config.in_hidden_size) self.mask_token = nn.Parameter(torch.zeros(config.hidden_size)) self.gradient_checkpointing = False def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: merge_size = 1 max_hw = int(grid_thw[:, 1:].max().item()) freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2) device = freq_table.device total_tokens = int(torch.prod(grid_thw, dim=1).sum().item()) pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device) offset = 0 for num_frames, height, width in grid_thw: merged_h, merged_w = height // merge_size, width // merge_size block_rows = torch.arange(merged_h, device=device) # block row indices block_cols = torch.arange(merged_w, device=device) # block col indices intra_row = torch.arange( merge_size, device=device ) # intra-block row offsets intra_col = torch.arange( merge_size, device=device ) # intra-block col offsets # Compute full-resolution positions row_idx = ( block_rows[:, None, None, None] * merge_size + intra_row[None, None, :, None] ) col_idx = ( block_cols[None, :, None, None] * merge_size + intra_col[None, None, None, :] ) row_idx = row_idx.expand( merged_h, merged_w, merge_size, merge_size ).reshape(-1) col_idx = col_idx.expand( merged_h, merged_w, merge_size, merge_size ).reshape(-1) coords = torch.stack((row_idx, col_idx), dim=-1) if num_frames > 1: coords = coords.repeat(num_frames, 1) num_tokens = coords.shape[0] pos_ids[offset : offset + num_tokens] = coords offset += num_tokens embeddings = freq_table[pos_ids] # lookup rotary embeddings embeddings = embeddings.flatten(1) return embeddings def forward( self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, target_mask: torch.Tensor, **kwargs, ) -> torch.Tensor: # mask out the hidden states hidden_states = self.in_proj(hidden_states) hidden_states[target_mask] = self.mask_token # apply position embeddings rotary_pos_emb = self.rot_pos_emb(grid_thw) emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) position_embeddings = (emb.cos(), emb.sin()) cu_seqlens = torch.repeat_interleave( grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0] ).cumsum( dim=0, # Select dtype based on the following factors: # - FA2 requires that cu_seqlens_q must have dtype int32 # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw # See https://github.com/huggingface/transformers/pull/34852 for more information dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, ) cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) for layer_num, blk in enumerate(self.blocks): hidden_states = blk( hidden_states, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings, **kwargs, ) # hidden_states = self.merger(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states @dataclass class SMBVisionModelOutput(ModelOutput): loss: Optional[torch.FloatTensor] = None mim_loss: Optional[torch.FloatTensor] = None jepa_loss: Optional[torch.FloatTensor] = None hidden_states: Optional[torch.FloatTensor] = None enc_hidden_states: Optional[torch.FloatTensor] = None predicted_hidden_states: Optional[torch.FloatTensor] = None class SMBVisionPretrainedModel(PreTrainedModel): config: SMBVisionModelConfig base_model_prefix = "" supports_gradient_checkpointing = True _no_split_modules = ["SMBVisionBlock"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) _supports_attention_backend = True def _init_weights(self, module): """Initialize the weights""" init_std = self.config.vision_config.initializer_range # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues def trunc_normal_f32_(weight, std): data_float_32 = weight.data.to(torch.float32) data_init = nn.init.trunc_normal_(data_float_32, mean=0.0, std=std) weight.data = data_init.to(weight.dtype) if isinstance(module, SMBVisionEncoder): trunc_normal_f32_(module.pos_embed.weight, std=init_std) for i, layer in enumerate(module.blocks, 1): std = init_std / (i**0.5) trunc_normal_f32_(layer.attn.proj.weight, std=std) trunc_normal_f32_(layer.mlp.fc2.weight, std=std) std = init_std / (len(module.blocks) + 1) ** 0.5 trunc_normal_f32_(module.mlp.fc2.weight, std=std) elif isinstance(module, SMBVisionPredictor): trunc_normal_f32_(module.mask_token, std=init_std) trunc_normal_f32_(module.in_proj.weight, std=init_std) trunc_normal_f32_(module.out_proj.weight, std=init_std) for i, layer in enumerate(module.blocks, 1): std = init_std / (i**0.5) trunc_normal_f32_(layer.attn.proj.weight, std=std) trunc_normal_f32_(layer.mlp.fc2.weight, std=std) std = init_std / (len(module.blocks) + 1) ** 0.5 trunc_normal_f32_(module.mlp.fc2.weight, std=std) elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)): trunc_normal_f32_(module.weight, std=init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class SMBVisionModel(SMBVisionPretrainedModel): def __init__(self, config, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.encoder = SMBVisionEncoder._from_config(config.vision_config) self.predictor = SMBVisionPredictor._from_config(config.predictor_config) self.to_pixels = nn.Linear( config.vision_config.hidden_size, config.vision_config.patch_size**2 * config.vision_config.temporal_patch_size, ) self.masking_ratio = config.masking_ratio self.mask_token = nn.Parameter( torch.zeros( config.vision_config.in_channels * config.vision_config.temporal_patch_size * config.vision_config.patch_size**2 ) ) self.mim_loss = nn.L1Loss(reduction="mean") self.jepa_loss = nn.MSELoss(reduction="mean") # Initialize weights and apply final processing self.post_init() def forward_features( self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs ) -> torch.Tensor: return self.encoder(hidden_states, grid_thw, **kwargs) def forward( self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, context_mask: Optional[torch.Tensor], target_mask: Optional[torch.Tensor], **kwargs, ) -> torch.Tensor: # modeling masked image reconstruction # prepare mask tokens num_masked = int(self.masking_ratio * hidden_states.shape[0]) masked_indices = torch.randperm(hidden_states.shape[0])[:num_masked] # replace masked indices with mask tokens inputs_mim = hidden_states.clone() inputs_mim[masked_indices] = self.mask_token.to(hidden_states.dtype) masked_hidden_states, deepstack_feature_lists = self.encoder( inputs_mim, grid_thw, **kwargs ) masked_hidden_states = self.to_pixels(masked_hidden_states) # compute mim loss mim_loss = self.mim_loss( masked_hidden_states[masked_indices], hidden_states[masked_indices] ) # modeling next embedding prediction if context_mask is not None and target_mask is not None: context_mask = context_mask == 1 target_mask = target_mask == 1 # extend context and target masks lengths = torch.prod(grid_thw, dim=1) extended_context_mask = torch.repeat_interleave(context_mask, lengths) extended_target_mask = torch.repeat_interleave(target_mask, lengths) enc_hidden_states, deepstack_feature_lists = self.encoder( hidden_states[extended_context_mask], grid_thw[context_mask], **kwargs ) pred_hidden_states = self.predictor( enc_hidden_states, grid_thw[context_mask], extended_target_mask, **kwargs, ) jepa_loss = self.jepa_loss( pred_hidden_states[extended_target_mask], enc_hidden_states[extended_target_mask], ) loss = mim_loss + jepa_loss return SMBVisionModelOutput( loss=loss, mim_loss=mim_loss, jepa_loss=jepa_loss, hidden_states=hidden_states, enc_hidden_states=enc_hidden_states, predicted_hidden_states=pred_hidden_states, ) else: return SMBVisionModelOutput( loss=mim_loss, mim_loss=mim_loss, jepa_loss=None, hidden_states=hidden_states, predicted_hidden_states=None, ) __all__ = ["SMBVisionEncoder", "SMBVisionPredictor", "SMBVisionModel"]