File size: 23,949 Bytes
21c4a77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-13 08:28:05,695 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,696 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 08:28:05,696 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,696 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:28:05,696 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,696 Train:  1100 sentences
2023-10-13 08:28:05,696         (train_with_dev=False, train_with_test=False)
2023-10-13 08:28:05,696 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,696 Training Params:
2023-10-13 08:28:05,697  - learning_rate: "5e-05" 
2023-10-13 08:28:05,697  - mini_batch_size: "8"
2023-10-13 08:28:05,697  - max_epochs: "10"
2023-10-13 08:28:05,697  - shuffle: "True"
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 Plugins:
2023-10-13 08:28:05,697  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:28:05,697  - metric: "('micro avg', 'f1-score')"
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 Computation:
2023-10-13 08:28:05,697  - compute on device: cuda:0
2023-10-13 08:28:05,697  - embedding storage: none
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:06,456 epoch 1 - iter 13/138 - loss 3.66066974 - time (sec): 0.76 - samples/sec: 3113.44 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:28:07,223 epoch 1 - iter 26/138 - loss 3.34555311 - time (sec): 1.53 - samples/sec: 2865.97 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:28:07,934 epoch 1 - iter 39/138 - loss 2.78497240 - time (sec): 2.24 - samples/sec: 2906.17 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:28:08,739 epoch 1 - iter 52/138 - loss 2.24907326 - time (sec): 3.04 - samples/sec: 2971.95 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:28:09,429 epoch 1 - iter 65/138 - loss 2.01501516 - time (sec): 3.73 - samples/sec: 2931.15 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:28:10,145 epoch 1 - iter 78/138 - loss 1.82175107 - time (sec): 4.45 - samples/sec: 2926.58 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:28:10,861 epoch 1 - iter 91/138 - loss 1.67513840 - time (sec): 5.16 - samples/sec: 2905.88 - lr: 0.000033 - momentum: 0.000000
2023-10-13 08:28:11,595 epoch 1 - iter 104/138 - loss 1.51839005 - time (sec): 5.90 - samples/sec: 2965.95 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:28:12,324 epoch 1 - iter 117/138 - loss 1.40443512 - time (sec): 6.63 - samples/sec: 2956.37 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:28:13,027 epoch 1 - iter 130/138 - loss 1.31422310 - time (sec): 7.33 - samples/sec: 2942.17 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:28:13,455 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:13,455 EPOCH 1 done: loss 1.2682 - lr: 0.000047
2023-10-13 08:28:14,151 DEV : loss 0.2636374831199646 - f1-score (micro avg)  0.6659
2023-10-13 08:28:14,155 saving best model
2023-10-13 08:28:14,512 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:15,242 epoch 2 - iter 13/138 - loss 0.26846597 - time (sec): 0.73 - samples/sec: 3308.51 - lr: 0.000050 - momentum: 0.000000
2023-10-13 08:28:15,904 epoch 2 - iter 26/138 - loss 0.27120212 - time (sec): 1.39 - samples/sec: 3039.89 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:28:16,677 epoch 2 - iter 39/138 - loss 0.26006371 - time (sec): 2.16 - samples/sec: 2985.06 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:28:17,416 epoch 2 - iter 52/138 - loss 0.24659558 - time (sec): 2.90 - samples/sec: 2925.83 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:28:18,184 epoch 2 - iter 65/138 - loss 0.22354409 - time (sec): 3.67 - samples/sec: 2898.61 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:28:18,890 epoch 2 - iter 78/138 - loss 0.22828453 - time (sec): 4.38 - samples/sec: 2921.98 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:28:19,606 epoch 2 - iter 91/138 - loss 0.21803767 - time (sec): 5.09 - samples/sec: 2915.35 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:28:20,349 epoch 2 - iter 104/138 - loss 0.21482014 - time (sec): 5.84 - samples/sec: 2929.71 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:28:21,120 epoch 2 - iter 117/138 - loss 0.21421039 - time (sec): 6.61 - samples/sec: 2915.97 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:28:21,868 epoch 2 - iter 130/138 - loss 0.20951797 - time (sec): 7.36 - samples/sec: 2934.82 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:28:22,277 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:22,277 EPOCH 2 done: loss 0.2061 - lr: 0.000045
2023-10-13 08:28:22,993 DEV : loss 0.14220675826072693 - f1-score (micro avg)  0.7941
2023-10-13 08:28:23,000 saving best model
2023-10-13 08:28:23,454 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:24,118 epoch 3 - iter 13/138 - loss 0.14146311 - time (sec): 0.66 - samples/sec: 2976.67 - lr: 0.000044 - momentum: 0.000000
2023-10-13 08:28:24,821 epoch 3 - iter 26/138 - loss 0.12153795 - time (sec): 1.36 - samples/sec: 2994.78 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:28:25,591 epoch 3 - iter 39/138 - loss 0.10515299 - time (sec): 2.13 - samples/sec: 3022.73 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:28:26,289 epoch 3 - iter 52/138 - loss 0.10537670 - time (sec): 2.83 - samples/sec: 3050.55 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:28:27,079 epoch 3 - iter 65/138 - loss 0.10512733 - time (sec): 3.62 - samples/sec: 2999.95 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:28:27,818 epoch 3 - iter 78/138 - loss 0.10309178 - time (sec): 4.36 - samples/sec: 2945.67 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:28:28,586 epoch 3 - iter 91/138 - loss 0.09858725 - time (sec): 5.13 - samples/sec: 2946.08 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:28:29,299 epoch 3 - iter 104/138 - loss 0.09748195 - time (sec): 5.84 - samples/sec: 2921.99 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:28:30,040 epoch 3 - iter 117/138 - loss 0.10218262 - time (sec): 6.58 - samples/sec: 2909.74 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:28:30,791 epoch 3 - iter 130/138 - loss 0.10322278 - time (sec): 7.33 - samples/sec: 2914.55 - lr: 0.000039 - momentum: 0.000000
2023-10-13 08:28:31,252 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:31,252 EPOCH 3 done: loss 0.0998 - lr: 0.000039
2023-10-13 08:28:31,944 DEV : loss 0.15421868860721588 - f1-score (micro avg)  0.8192
2023-10-13 08:28:31,949 saving best model
2023-10-13 08:28:32,405 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:33,118 epoch 4 - iter 13/138 - loss 0.04874159 - time (sec): 0.71 - samples/sec: 2959.18 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:28:33,841 epoch 4 - iter 26/138 - loss 0.06713360 - time (sec): 1.43 - samples/sec: 3098.14 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:28:34,613 epoch 4 - iter 39/138 - loss 0.06554658 - time (sec): 2.21 - samples/sec: 2920.46 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:28:35,349 epoch 4 - iter 52/138 - loss 0.06616042 - time (sec): 2.94 - samples/sec: 2928.02 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:28:36,106 epoch 4 - iter 65/138 - loss 0.07177299 - time (sec): 3.70 - samples/sec: 2914.25 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:28:36,784 epoch 4 - iter 78/138 - loss 0.06695069 - time (sec): 4.38 - samples/sec: 2926.56 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:28:37,483 epoch 4 - iter 91/138 - loss 0.07222990 - time (sec): 5.08 - samples/sec: 2935.33 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:28:38,230 epoch 4 - iter 104/138 - loss 0.07333500 - time (sec): 5.82 - samples/sec: 2903.09 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:28:39,001 epoch 4 - iter 117/138 - loss 0.06943752 - time (sec): 6.59 - samples/sec: 2918.20 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:28:39,795 epoch 4 - iter 130/138 - loss 0.06896700 - time (sec): 7.39 - samples/sec: 2921.26 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:28:40,241 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:40,241 EPOCH 4 done: loss 0.0703 - lr: 0.000034
2023-10-13 08:28:40,941 DEV : loss 0.11516644060611725 - f1-score (micro avg)  0.8669
2023-10-13 08:28:40,946 saving best model
2023-10-13 08:28:41,436 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:42,167 epoch 5 - iter 13/138 - loss 0.03479877 - time (sec): 0.73 - samples/sec: 3007.48 - lr: 0.000033 - momentum: 0.000000
2023-10-13 08:28:42,891 epoch 5 - iter 26/138 - loss 0.04109845 - time (sec): 1.45 - samples/sec: 3029.21 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:28:43,633 epoch 5 - iter 39/138 - loss 0.05555495 - time (sec): 2.19 - samples/sec: 2949.93 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:28:44,388 epoch 5 - iter 52/138 - loss 0.05444566 - time (sec): 2.95 - samples/sec: 2882.77 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:28:45,120 epoch 5 - iter 65/138 - loss 0.05631263 - time (sec): 3.68 - samples/sec: 2910.39 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:28:45,824 epoch 5 - iter 78/138 - loss 0.05349107 - time (sec): 4.39 - samples/sec: 2935.54 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:28:46,596 epoch 5 - iter 91/138 - loss 0.05367029 - time (sec): 5.16 - samples/sec: 2911.64 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:28:47,323 epoch 5 - iter 104/138 - loss 0.05086712 - time (sec): 5.89 - samples/sec: 2893.45 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:28:48,065 epoch 5 - iter 117/138 - loss 0.04647247 - time (sec): 6.63 - samples/sec: 2890.67 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:28:48,815 epoch 5 - iter 130/138 - loss 0.04966325 - time (sec): 7.38 - samples/sec: 2895.02 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:28:49,265 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:49,265 EPOCH 5 done: loss 0.0487 - lr: 0.000028
2023-10-13 08:28:50,004 DEV : loss 0.13216754794120789 - f1-score (micro avg)  0.879
2023-10-13 08:28:50,010 saving best model
2023-10-13 08:28:50,466 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:51,217 epoch 6 - iter 13/138 - loss 0.04398162 - time (sec): 0.75 - samples/sec: 2873.78 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:28:51,968 epoch 6 - iter 26/138 - loss 0.04122476 - time (sec): 1.50 - samples/sec: 2943.01 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:28:52,738 epoch 6 - iter 39/138 - loss 0.03461267 - time (sec): 2.27 - samples/sec: 2887.58 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:28:53,455 epoch 6 - iter 52/138 - loss 0.03086480 - time (sec): 2.99 - samples/sec: 2864.22 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:28:54,189 epoch 6 - iter 65/138 - loss 0.04069526 - time (sec): 3.72 - samples/sec: 2862.68 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:28:54,898 epoch 6 - iter 78/138 - loss 0.03871127 - time (sec): 4.43 - samples/sec: 2884.43 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:28:55,628 epoch 6 - iter 91/138 - loss 0.03856114 - time (sec): 5.16 - samples/sec: 2900.31 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:28:56,299 epoch 6 - iter 104/138 - loss 0.03853103 - time (sec): 5.83 - samples/sec: 2916.76 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:28:57,045 epoch 6 - iter 117/138 - loss 0.03855877 - time (sec): 6.58 - samples/sec: 2922.06 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:28:57,816 epoch 6 - iter 130/138 - loss 0.03662516 - time (sec): 7.35 - samples/sec: 2923.47 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:28:58,257 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:58,257 EPOCH 6 done: loss 0.0364 - lr: 0.000023
2023-10-13 08:28:58,953 DEV : loss 0.1272154450416565 - f1-score (micro avg)  0.887
2023-10-13 08:28:58,959 saving best model
2023-10-13 08:28:59,437 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:00,164 epoch 7 - iter 13/138 - loss 0.00877141 - time (sec): 0.73 - samples/sec: 2847.01 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:29:00,941 epoch 7 - iter 26/138 - loss 0.01397465 - time (sec): 1.50 - samples/sec: 2864.84 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:29:01,669 epoch 7 - iter 39/138 - loss 0.01140872 - time (sec): 2.23 - samples/sec: 2798.42 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:29:02,417 epoch 7 - iter 52/138 - loss 0.01542022 - time (sec): 2.98 - samples/sec: 2894.58 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:29:03,153 epoch 7 - iter 65/138 - loss 0.01698683 - time (sec): 3.72 - samples/sec: 2892.26 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:29:03,863 epoch 7 - iter 78/138 - loss 0.02508462 - time (sec): 4.42 - samples/sec: 2918.67 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:29:04,589 epoch 7 - iter 91/138 - loss 0.02618363 - time (sec): 5.15 - samples/sec: 2927.40 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:29:05,321 epoch 7 - iter 104/138 - loss 0.03015213 - time (sec): 5.88 - samples/sec: 2947.69 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:29:06,042 epoch 7 - iter 117/138 - loss 0.02745988 - time (sec): 6.60 - samples/sec: 2937.67 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:29:06,771 epoch 7 - iter 130/138 - loss 0.02731669 - time (sec): 7.33 - samples/sec: 2922.38 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:29:07,231 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:07,231 EPOCH 7 done: loss 0.0260 - lr: 0.000017
2023-10-13 08:29:07,936 DEV : loss 0.13966915011405945 - f1-score (micro avg)  0.8801
2023-10-13 08:29:07,941 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:08,658 epoch 8 - iter 13/138 - loss 0.01104765 - time (sec): 0.72 - samples/sec: 2978.80 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:29:09,410 epoch 8 - iter 26/138 - loss 0.00752305 - time (sec): 1.47 - samples/sec: 2883.98 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:29:10,155 epoch 8 - iter 39/138 - loss 0.01898034 - time (sec): 2.21 - samples/sec: 2934.28 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:29:10,835 epoch 8 - iter 52/138 - loss 0.01860073 - time (sec): 2.89 - samples/sec: 2894.55 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:29:11,586 epoch 8 - iter 65/138 - loss 0.02049879 - time (sec): 3.64 - samples/sec: 2925.06 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:29:12,319 epoch 8 - iter 78/138 - loss 0.02039417 - time (sec): 4.38 - samples/sec: 2930.02 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:29:13,053 epoch 8 - iter 91/138 - loss 0.02209402 - time (sec): 5.11 - samples/sec: 2961.45 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:29:13,790 epoch 8 - iter 104/138 - loss 0.02010574 - time (sec): 5.85 - samples/sec: 2961.88 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:29:14,510 epoch 8 - iter 117/138 - loss 0.01915344 - time (sec): 6.57 - samples/sec: 2948.41 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:29:15,365 epoch 8 - iter 130/138 - loss 0.01886829 - time (sec): 7.42 - samples/sec: 2926.98 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:29:15,788 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:15,788 EPOCH 8 done: loss 0.0193 - lr: 0.000012
2023-10-13 08:29:16,490 DEV : loss 0.15436452627182007 - f1-score (micro avg)  0.887
2023-10-13 08:29:16,498 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:17,209 epoch 9 - iter 13/138 - loss 0.00300260 - time (sec): 0.71 - samples/sec: 3095.22 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:29:17,941 epoch 9 - iter 26/138 - loss 0.00663967 - time (sec): 1.44 - samples/sec: 2986.00 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:29:18,686 epoch 9 - iter 39/138 - loss 0.00627940 - time (sec): 2.19 - samples/sec: 2867.04 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:29:19,480 epoch 9 - iter 52/138 - loss 0.00791959 - time (sec): 2.98 - samples/sec: 2922.84 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:29:20,205 epoch 9 - iter 65/138 - loss 0.01291701 - time (sec): 3.71 - samples/sec: 2931.70 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:29:20,980 epoch 9 - iter 78/138 - loss 0.01251097 - time (sec): 4.48 - samples/sec: 2923.83 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:29:21,723 epoch 9 - iter 91/138 - loss 0.01631549 - time (sec): 5.22 - samples/sec: 2895.60 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:29:22,455 epoch 9 - iter 104/138 - loss 0.01584708 - time (sec): 5.96 - samples/sec: 2915.99 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:29:23,156 epoch 9 - iter 117/138 - loss 0.01623051 - time (sec): 6.66 - samples/sec: 2927.31 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:29:23,826 epoch 9 - iter 130/138 - loss 0.01611756 - time (sec): 7.33 - samples/sec: 2919.85 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:29:24,288 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:24,289 EPOCH 9 done: loss 0.0160 - lr: 0.000006
2023-10-13 08:29:25,032 DEV : loss 0.15071909129619598 - f1-score (micro avg)  0.8952
2023-10-13 08:29:25,038 saving best model
2023-10-13 08:29:25,513 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:26,284 epoch 10 - iter 13/138 - loss 0.01094785 - time (sec): 0.77 - samples/sec: 3073.99 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:29:27,003 epoch 10 - iter 26/138 - loss 0.00729644 - time (sec): 1.49 - samples/sec: 2938.90 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:29:27,769 epoch 10 - iter 39/138 - loss 0.00604709 - time (sec): 2.25 - samples/sec: 2859.24 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:29:28,495 epoch 10 - iter 52/138 - loss 0.00925022 - time (sec): 2.98 - samples/sec: 2876.88 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:29:29,231 epoch 10 - iter 65/138 - loss 0.00835002 - time (sec): 3.72 - samples/sec: 2837.02 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:29:30,024 epoch 10 - iter 78/138 - loss 0.00757364 - time (sec): 4.51 - samples/sec: 2832.91 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:29:30,793 epoch 10 - iter 91/138 - loss 0.01036881 - time (sec): 5.28 - samples/sec: 2857.81 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:29:31,529 epoch 10 - iter 104/138 - loss 0.00965364 - time (sec): 6.01 - samples/sec: 2888.98 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:29:32,219 epoch 10 - iter 117/138 - loss 0.01076463 - time (sec): 6.70 - samples/sec: 2882.85 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:29:32,956 epoch 10 - iter 130/138 - loss 0.01145230 - time (sec): 7.44 - samples/sec: 2876.07 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:29:33,405 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:33,405 EPOCH 10 done: loss 0.0115 - lr: 0.000000
2023-10-13 08:29:34,090 DEV : loss 0.15256953239440918 - f1-score (micro avg)  0.8929
2023-10-13 08:29:34,451 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:34,453 Loading model from best epoch ...
2023-10-13 08:29:36,011 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:29:36,732 
Results:
- F-score (micro) 0.9174
- F-score (macro) 0.8813
- Accuracy 0.8621

By class:
              precision    recall  f1-score   support

       scope     0.8944    0.9148    0.9045       176
        pers     0.9760    0.9531    0.9644       128
        work     0.8767    0.8649    0.8707        74
      object     1.0000    1.0000    1.0000         2
         loc     1.0000    0.5000    0.6667         2

   micro avg     0.9186    0.9162    0.9174       382
   macro avg     0.9494    0.8466    0.8813       382
weighted avg     0.9194    0.9162    0.9173       382

2023-10-13 08:29:36,733 ----------------------------------------------------------------------------------------------------