File size: 23,949 Bytes
21c4a77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
2023-10-13 08:28:05,695 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,696 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 08:28:05,696 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,696 MultiCorpus: 1100 train + 206 dev + 240 test sentences
- NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:28:05,696 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,696 Train: 1100 sentences
2023-10-13 08:28:05,696 (train_with_dev=False, train_with_test=False)
2023-10-13 08:28:05,696 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,696 Training Params:
2023-10-13 08:28:05,697 - learning_rate: "5e-05"
2023-10-13 08:28:05,697 - mini_batch_size: "8"
2023-10-13 08:28:05,697 - max_epochs: "10"
2023-10-13 08:28:05,697 - shuffle: "True"
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 Plugins:
2023-10-13 08:28:05,697 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:28:05,697 - metric: "('micro avg', 'f1-score')"
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 Computation:
2023-10-13 08:28:05,697 - compute on device: cuda:0
2023-10-13 08:28:05,697 - embedding storage: none
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:05,697 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:06,456 epoch 1 - iter 13/138 - loss 3.66066974 - time (sec): 0.76 - samples/sec: 3113.44 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:28:07,223 epoch 1 - iter 26/138 - loss 3.34555311 - time (sec): 1.53 - samples/sec: 2865.97 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:28:07,934 epoch 1 - iter 39/138 - loss 2.78497240 - time (sec): 2.24 - samples/sec: 2906.17 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:28:08,739 epoch 1 - iter 52/138 - loss 2.24907326 - time (sec): 3.04 - samples/sec: 2971.95 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:28:09,429 epoch 1 - iter 65/138 - loss 2.01501516 - time (sec): 3.73 - samples/sec: 2931.15 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:28:10,145 epoch 1 - iter 78/138 - loss 1.82175107 - time (sec): 4.45 - samples/sec: 2926.58 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:28:10,861 epoch 1 - iter 91/138 - loss 1.67513840 - time (sec): 5.16 - samples/sec: 2905.88 - lr: 0.000033 - momentum: 0.000000
2023-10-13 08:28:11,595 epoch 1 - iter 104/138 - loss 1.51839005 - time (sec): 5.90 - samples/sec: 2965.95 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:28:12,324 epoch 1 - iter 117/138 - loss 1.40443512 - time (sec): 6.63 - samples/sec: 2956.37 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:28:13,027 epoch 1 - iter 130/138 - loss 1.31422310 - time (sec): 7.33 - samples/sec: 2942.17 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:28:13,455 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:13,455 EPOCH 1 done: loss 1.2682 - lr: 0.000047
2023-10-13 08:28:14,151 DEV : loss 0.2636374831199646 - f1-score (micro avg) 0.6659
2023-10-13 08:28:14,155 saving best model
2023-10-13 08:28:14,512 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:15,242 epoch 2 - iter 13/138 - loss 0.26846597 - time (sec): 0.73 - samples/sec: 3308.51 - lr: 0.000050 - momentum: 0.000000
2023-10-13 08:28:15,904 epoch 2 - iter 26/138 - loss 0.27120212 - time (sec): 1.39 - samples/sec: 3039.89 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:28:16,677 epoch 2 - iter 39/138 - loss 0.26006371 - time (sec): 2.16 - samples/sec: 2985.06 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:28:17,416 epoch 2 - iter 52/138 - loss 0.24659558 - time (sec): 2.90 - samples/sec: 2925.83 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:28:18,184 epoch 2 - iter 65/138 - loss 0.22354409 - time (sec): 3.67 - samples/sec: 2898.61 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:28:18,890 epoch 2 - iter 78/138 - loss 0.22828453 - time (sec): 4.38 - samples/sec: 2921.98 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:28:19,606 epoch 2 - iter 91/138 - loss 0.21803767 - time (sec): 5.09 - samples/sec: 2915.35 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:28:20,349 epoch 2 - iter 104/138 - loss 0.21482014 - time (sec): 5.84 - samples/sec: 2929.71 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:28:21,120 epoch 2 - iter 117/138 - loss 0.21421039 - time (sec): 6.61 - samples/sec: 2915.97 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:28:21,868 epoch 2 - iter 130/138 - loss 0.20951797 - time (sec): 7.36 - samples/sec: 2934.82 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:28:22,277 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:22,277 EPOCH 2 done: loss 0.2061 - lr: 0.000045
2023-10-13 08:28:22,993 DEV : loss 0.14220675826072693 - f1-score (micro avg) 0.7941
2023-10-13 08:28:23,000 saving best model
2023-10-13 08:28:23,454 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:24,118 epoch 3 - iter 13/138 - loss 0.14146311 - time (sec): 0.66 - samples/sec: 2976.67 - lr: 0.000044 - momentum: 0.000000
2023-10-13 08:28:24,821 epoch 3 - iter 26/138 - loss 0.12153795 - time (sec): 1.36 - samples/sec: 2994.78 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:28:25,591 epoch 3 - iter 39/138 - loss 0.10515299 - time (sec): 2.13 - samples/sec: 3022.73 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:28:26,289 epoch 3 - iter 52/138 - loss 0.10537670 - time (sec): 2.83 - samples/sec: 3050.55 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:28:27,079 epoch 3 - iter 65/138 - loss 0.10512733 - time (sec): 3.62 - samples/sec: 2999.95 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:28:27,818 epoch 3 - iter 78/138 - loss 0.10309178 - time (sec): 4.36 - samples/sec: 2945.67 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:28:28,586 epoch 3 - iter 91/138 - loss 0.09858725 - time (sec): 5.13 - samples/sec: 2946.08 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:28:29,299 epoch 3 - iter 104/138 - loss 0.09748195 - time (sec): 5.84 - samples/sec: 2921.99 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:28:30,040 epoch 3 - iter 117/138 - loss 0.10218262 - time (sec): 6.58 - samples/sec: 2909.74 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:28:30,791 epoch 3 - iter 130/138 - loss 0.10322278 - time (sec): 7.33 - samples/sec: 2914.55 - lr: 0.000039 - momentum: 0.000000
2023-10-13 08:28:31,252 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:31,252 EPOCH 3 done: loss 0.0998 - lr: 0.000039
2023-10-13 08:28:31,944 DEV : loss 0.15421868860721588 - f1-score (micro avg) 0.8192
2023-10-13 08:28:31,949 saving best model
2023-10-13 08:28:32,405 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:33,118 epoch 4 - iter 13/138 - loss 0.04874159 - time (sec): 0.71 - samples/sec: 2959.18 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:28:33,841 epoch 4 - iter 26/138 - loss 0.06713360 - time (sec): 1.43 - samples/sec: 3098.14 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:28:34,613 epoch 4 - iter 39/138 - loss 0.06554658 - time (sec): 2.21 - samples/sec: 2920.46 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:28:35,349 epoch 4 - iter 52/138 - loss 0.06616042 - time (sec): 2.94 - samples/sec: 2928.02 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:28:36,106 epoch 4 - iter 65/138 - loss 0.07177299 - time (sec): 3.70 - samples/sec: 2914.25 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:28:36,784 epoch 4 - iter 78/138 - loss 0.06695069 - time (sec): 4.38 - samples/sec: 2926.56 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:28:37,483 epoch 4 - iter 91/138 - loss 0.07222990 - time (sec): 5.08 - samples/sec: 2935.33 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:28:38,230 epoch 4 - iter 104/138 - loss 0.07333500 - time (sec): 5.82 - samples/sec: 2903.09 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:28:39,001 epoch 4 - iter 117/138 - loss 0.06943752 - time (sec): 6.59 - samples/sec: 2918.20 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:28:39,795 epoch 4 - iter 130/138 - loss 0.06896700 - time (sec): 7.39 - samples/sec: 2921.26 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:28:40,241 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:40,241 EPOCH 4 done: loss 0.0703 - lr: 0.000034
2023-10-13 08:28:40,941 DEV : loss 0.11516644060611725 - f1-score (micro avg) 0.8669
2023-10-13 08:28:40,946 saving best model
2023-10-13 08:28:41,436 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:42,167 epoch 5 - iter 13/138 - loss 0.03479877 - time (sec): 0.73 - samples/sec: 3007.48 - lr: 0.000033 - momentum: 0.000000
2023-10-13 08:28:42,891 epoch 5 - iter 26/138 - loss 0.04109845 - time (sec): 1.45 - samples/sec: 3029.21 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:28:43,633 epoch 5 - iter 39/138 - loss 0.05555495 - time (sec): 2.19 - samples/sec: 2949.93 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:28:44,388 epoch 5 - iter 52/138 - loss 0.05444566 - time (sec): 2.95 - samples/sec: 2882.77 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:28:45,120 epoch 5 - iter 65/138 - loss 0.05631263 - time (sec): 3.68 - samples/sec: 2910.39 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:28:45,824 epoch 5 - iter 78/138 - loss 0.05349107 - time (sec): 4.39 - samples/sec: 2935.54 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:28:46,596 epoch 5 - iter 91/138 - loss 0.05367029 - time (sec): 5.16 - samples/sec: 2911.64 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:28:47,323 epoch 5 - iter 104/138 - loss 0.05086712 - time (sec): 5.89 - samples/sec: 2893.45 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:28:48,065 epoch 5 - iter 117/138 - loss 0.04647247 - time (sec): 6.63 - samples/sec: 2890.67 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:28:48,815 epoch 5 - iter 130/138 - loss 0.04966325 - time (sec): 7.38 - samples/sec: 2895.02 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:28:49,265 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:49,265 EPOCH 5 done: loss 0.0487 - lr: 0.000028
2023-10-13 08:28:50,004 DEV : loss 0.13216754794120789 - f1-score (micro avg) 0.879
2023-10-13 08:28:50,010 saving best model
2023-10-13 08:28:50,466 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:51,217 epoch 6 - iter 13/138 - loss 0.04398162 - time (sec): 0.75 - samples/sec: 2873.78 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:28:51,968 epoch 6 - iter 26/138 - loss 0.04122476 - time (sec): 1.50 - samples/sec: 2943.01 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:28:52,738 epoch 6 - iter 39/138 - loss 0.03461267 - time (sec): 2.27 - samples/sec: 2887.58 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:28:53,455 epoch 6 - iter 52/138 - loss 0.03086480 - time (sec): 2.99 - samples/sec: 2864.22 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:28:54,189 epoch 6 - iter 65/138 - loss 0.04069526 - time (sec): 3.72 - samples/sec: 2862.68 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:28:54,898 epoch 6 - iter 78/138 - loss 0.03871127 - time (sec): 4.43 - samples/sec: 2884.43 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:28:55,628 epoch 6 - iter 91/138 - loss 0.03856114 - time (sec): 5.16 - samples/sec: 2900.31 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:28:56,299 epoch 6 - iter 104/138 - loss 0.03853103 - time (sec): 5.83 - samples/sec: 2916.76 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:28:57,045 epoch 6 - iter 117/138 - loss 0.03855877 - time (sec): 6.58 - samples/sec: 2922.06 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:28:57,816 epoch 6 - iter 130/138 - loss 0.03662516 - time (sec): 7.35 - samples/sec: 2923.47 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:28:58,257 ----------------------------------------------------------------------------------------------------
2023-10-13 08:28:58,257 EPOCH 6 done: loss 0.0364 - lr: 0.000023
2023-10-13 08:28:58,953 DEV : loss 0.1272154450416565 - f1-score (micro avg) 0.887
2023-10-13 08:28:58,959 saving best model
2023-10-13 08:28:59,437 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:00,164 epoch 7 - iter 13/138 - loss 0.00877141 - time (sec): 0.73 - samples/sec: 2847.01 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:29:00,941 epoch 7 - iter 26/138 - loss 0.01397465 - time (sec): 1.50 - samples/sec: 2864.84 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:29:01,669 epoch 7 - iter 39/138 - loss 0.01140872 - time (sec): 2.23 - samples/sec: 2798.42 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:29:02,417 epoch 7 - iter 52/138 - loss 0.01542022 - time (sec): 2.98 - samples/sec: 2894.58 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:29:03,153 epoch 7 - iter 65/138 - loss 0.01698683 - time (sec): 3.72 - samples/sec: 2892.26 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:29:03,863 epoch 7 - iter 78/138 - loss 0.02508462 - time (sec): 4.42 - samples/sec: 2918.67 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:29:04,589 epoch 7 - iter 91/138 - loss 0.02618363 - time (sec): 5.15 - samples/sec: 2927.40 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:29:05,321 epoch 7 - iter 104/138 - loss 0.03015213 - time (sec): 5.88 - samples/sec: 2947.69 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:29:06,042 epoch 7 - iter 117/138 - loss 0.02745988 - time (sec): 6.60 - samples/sec: 2937.67 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:29:06,771 epoch 7 - iter 130/138 - loss 0.02731669 - time (sec): 7.33 - samples/sec: 2922.38 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:29:07,231 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:07,231 EPOCH 7 done: loss 0.0260 - lr: 0.000017
2023-10-13 08:29:07,936 DEV : loss 0.13966915011405945 - f1-score (micro avg) 0.8801
2023-10-13 08:29:07,941 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:08,658 epoch 8 - iter 13/138 - loss 0.01104765 - time (sec): 0.72 - samples/sec: 2978.80 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:29:09,410 epoch 8 - iter 26/138 - loss 0.00752305 - time (sec): 1.47 - samples/sec: 2883.98 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:29:10,155 epoch 8 - iter 39/138 - loss 0.01898034 - time (sec): 2.21 - samples/sec: 2934.28 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:29:10,835 epoch 8 - iter 52/138 - loss 0.01860073 - time (sec): 2.89 - samples/sec: 2894.55 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:29:11,586 epoch 8 - iter 65/138 - loss 0.02049879 - time (sec): 3.64 - samples/sec: 2925.06 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:29:12,319 epoch 8 - iter 78/138 - loss 0.02039417 - time (sec): 4.38 - samples/sec: 2930.02 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:29:13,053 epoch 8 - iter 91/138 - loss 0.02209402 - time (sec): 5.11 - samples/sec: 2961.45 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:29:13,790 epoch 8 - iter 104/138 - loss 0.02010574 - time (sec): 5.85 - samples/sec: 2961.88 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:29:14,510 epoch 8 - iter 117/138 - loss 0.01915344 - time (sec): 6.57 - samples/sec: 2948.41 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:29:15,365 epoch 8 - iter 130/138 - loss 0.01886829 - time (sec): 7.42 - samples/sec: 2926.98 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:29:15,788 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:15,788 EPOCH 8 done: loss 0.0193 - lr: 0.000012
2023-10-13 08:29:16,490 DEV : loss 0.15436452627182007 - f1-score (micro avg) 0.887
2023-10-13 08:29:16,498 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:17,209 epoch 9 - iter 13/138 - loss 0.00300260 - time (sec): 0.71 - samples/sec: 3095.22 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:29:17,941 epoch 9 - iter 26/138 - loss 0.00663967 - time (sec): 1.44 - samples/sec: 2986.00 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:29:18,686 epoch 9 - iter 39/138 - loss 0.00627940 - time (sec): 2.19 - samples/sec: 2867.04 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:29:19,480 epoch 9 - iter 52/138 - loss 0.00791959 - time (sec): 2.98 - samples/sec: 2922.84 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:29:20,205 epoch 9 - iter 65/138 - loss 0.01291701 - time (sec): 3.71 - samples/sec: 2931.70 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:29:20,980 epoch 9 - iter 78/138 - loss 0.01251097 - time (sec): 4.48 - samples/sec: 2923.83 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:29:21,723 epoch 9 - iter 91/138 - loss 0.01631549 - time (sec): 5.22 - samples/sec: 2895.60 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:29:22,455 epoch 9 - iter 104/138 - loss 0.01584708 - time (sec): 5.96 - samples/sec: 2915.99 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:29:23,156 epoch 9 - iter 117/138 - loss 0.01623051 - time (sec): 6.66 - samples/sec: 2927.31 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:29:23,826 epoch 9 - iter 130/138 - loss 0.01611756 - time (sec): 7.33 - samples/sec: 2919.85 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:29:24,288 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:24,289 EPOCH 9 done: loss 0.0160 - lr: 0.000006
2023-10-13 08:29:25,032 DEV : loss 0.15071909129619598 - f1-score (micro avg) 0.8952
2023-10-13 08:29:25,038 saving best model
2023-10-13 08:29:25,513 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:26,284 epoch 10 - iter 13/138 - loss 0.01094785 - time (sec): 0.77 - samples/sec: 3073.99 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:29:27,003 epoch 10 - iter 26/138 - loss 0.00729644 - time (sec): 1.49 - samples/sec: 2938.90 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:29:27,769 epoch 10 - iter 39/138 - loss 0.00604709 - time (sec): 2.25 - samples/sec: 2859.24 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:29:28,495 epoch 10 - iter 52/138 - loss 0.00925022 - time (sec): 2.98 - samples/sec: 2876.88 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:29:29,231 epoch 10 - iter 65/138 - loss 0.00835002 - time (sec): 3.72 - samples/sec: 2837.02 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:29:30,024 epoch 10 - iter 78/138 - loss 0.00757364 - time (sec): 4.51 - samples/sec: 2832.91 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:29:30,793 epoch 10 - iter 91/138 - loss 0.01036881 - time (sec): 5.28 - samples/sec: 2857.81 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:29:31,529 epoch 10 - iter 104/138 - loss 0.00965364 - time (sec): 6.01 - samples/sec: 2888.98 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:29:32,219 epoch 10 - iter 117/138 - loss 0.01076463 - time (sec): 6.70 - samples/sec: 2882.85 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:29:32,956 epoch 10 - iter 130/138 - loss 0.01145230 - time (sec): 7.44 - samples/sec: 2876.07 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:29:33,405 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:33,405 EPOCH 10 done: loss 0.0115 - lr: 0.000000
2023-10-13 08:29:34,090 DEV : loss 0.15256953239440918 - f1-score (micro avg) 0.8929
2023-10-13 08:29:34,451 ----------------------------------------------------------------------------------------------------
2023-10-13 08:29:34,453 Loading model from best epoch ...
2023-10-13 08:29:36,011 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:29:36,732
Results:
- F-score (micro) 0.9174
- F-score (macro) 0.8813
- Accuracy 0.8621
By class:
precision recall f1-score support
scope 0.8944 0.9148 0.9045 176
pers 0.9760 0.9531 0.9644 128
work 0.8767 0.8649 0.8707 74
object 1.0000 1.0000 1.0000 2
loc 1.0000 0.5000 0.6667 2
micro avg 0.9186 0.9162 0.9174 382
macro avg 0.9494 0.8466 0.8813 382
weighted avg 0.9194 0.9162 0.9173 382
2023-10-13 08:29:36,733 ----------------------------------------------------------------------------------------------------
|