Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +92 -3
- added_tokens.json +34 -0
- assets/comparision.png +3 -0
- config.json +66 -0
- model.safetensors.index.json +698 -0
- models/__init__.py +0 -0
- models/gen_pipeline.py +631 -0
- models/nextstep_model.py +538 -0
- pytorch-model-00001-of-00004.safetensors +3 -0
- pytorch-model-00002-of-00004.safetensors +3 -0
- pytorch-model-00003-of-00004.safetensors +3 -0
- pytorch-model-00004-of-00004.safetensors +3 -0
- requirements.txt +14 -0
- special_tokens_map.json +27 -0
- tokenizer.json +3 -0
- tokenizer_config.json +285 -0
- vae/checkpoint.pt +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/comparision.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,92 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
pipeline_tag: text-to-image
|
| 4 |
+
library_name: transformers
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## NextStep-1.1
|
| 8 |
+
|
| 9 |
+
[Homepage](https://stepfun.ai/research/en/nextstep-1)
|
| 10 |
+
| [GitHub](https://github.com/stepfun-ai/NextStep-1)
|
| 11 |
+
| [Paper](https://arxiv.org/abs/2508.10711)
|
| 12 |
+
|
| 13 |
+
We introduce **NextStep-1.1**, a new model represents a significant leap forward in the NextStep series. This version effectively resolves the visualization failures seen in **NextStep-1** and substantially elevates image quality through extended training and a Flow-based Reinforcement Learning (RL) post-training paradigm.
|
| 14 |
+
|
| 15 |
+
<div align='center'>
|
| 16 |
+
<img src="assets/comparision.png" class="interpolation-image" alt="arch." width="100%" />
|
| 17 |
+
</div>
|
| 18 |
+
|
| 19 |
+
## What's New in 1.1?
|
| 20 |
+
|
| 21 |
+
NextStep-1.1 is not just a fine-tune; it is a re-engineered version focused on stability and high-fidelity output. Key improvements include:
|
| 22 |
+
|
| 23 |
+
- RL Enhanced Visual Fidelity: Significant improvement in image texture and a substantial reduction in visual artifacts via RL, ensuring much cleaner and more professional outputs.
|
| 24 |
+
|
| 25 |
+
- Technical Stability: Solves numerical instability inherent in autoregressive flow-based models.
|
| 26 |
+
|
| 27 |
+
## Environment Setup
|
| 28 |
+
|
| 29 |
+
To avoid potential errors when loading and running your models, we recommend using the following settings:
|
| 30 |
+
|
| 31 |
+
```shell
|
| 32 |
+
conda create -n nextstep python=3.11 -y
|
| 33 |
+
conda activate nextstep
|
| 34 |
+
|
| 35 |
+
pip install uv # optional
|
| 36 |
+
|
| 37 |
+
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/stepfun-ai/NextStep-1.1-Pretrain-256px && cd NextStep-1.1-Pretrain-256px
|
| 38 |
+
uv pip install -r requirements.txt
|
| 39 |
+
|
| 40 |
+
hf download stepfun-ai/NextStep-1.1-Pretrain-256px "vae/checkpoint.pt" --local-dir ./
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
## Usage
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
import torch
|
| 47 |
+
from transformers import AutoTokenizer, AutoModel
|
| 48 |
+
from models.gen_pipeline import NextStepPipeline
|
| 49 |
+
|
| 50 |
+
HF_HUB = "stepfun-ai/NextStep-1.1-Pretrain-256px"
|
| 51 |
+
|
| 52 |
+
# load model and tokenizer
|
| 53 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True)
|
| 54 |
+
model = AutoModel.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True)
|
| 55 |
+
pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device="cuda", dtype=torch.bfloat16)
|
| 56 |
+
|
| 57 |
+
# set prompts
|
| 58 |
+
positive_prompt = ""
|
| 59 |
+
negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."
|
| 60 |
+
example_prompt = "A REALISTIC PHOTOGRAPH OF A WALL WITH \"TOWARD AUTOREGRESSIVE IMAGE GENERATION WITH CONTINUOUS TOKENS AT SCALE\" PROMINENTLY DISPLAYED"
|
| 61 |
+
|
| 62 |
+
# generate image from text
|
| 63 |
+
IMG_SIZE = 256
|
| 64 |
+
image = pipeline.generate_image(
|
| 65 |
+
example_prompt,
|
| 66 |
+
hw=(IMG_SIZE, IMG_SIZE),
|
| 67 |
+
num_images_per_caption=1,
|
| 68 |
+
positive_prompt=positive_prompt,
|
| 69 |
+
negative_prompt=negative_prompt,
|
| 70 |
+
cfg=7.5,
|
| 71 |
+
cfg_img=1.0,
|
| 72 |
+
cfg_schedule="constant",
|
| 73 |
+
use_norm=False,
|
| 74 |
+
num_sampling_steps=28,
|
| 75 |
+
timesteps_shift=1.0,
|
| 76 |
+
seed=3407,
|
| 77 |
+
)[0]
|
| 78 |
+
image.save("./assets/output.jpg")
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
## Citation
|
| 82 |
+
|
| 83 |
+
If you find NextStep useful for your research and applications, please consider starring this repository and citing:
|
| 84 |
+
|
| 85 |
+
```bibtex
|
| 86 |
+
@article{nextstepteam2025nextstep1,
|
| 87 |
+
title={NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale},
|
| 88 |
+
author={NextStep Team and Chunrui Han and Guopeng Li and Jingwei Wu and Quan Sun and Yan Cai and Yuang Peng and Zheng Ge and Deyu Zhou and Haomiao Tang and Hongyu Zhou and Kenkun Liu and Ailin Huang and Bin Wang and Changxin Miao and Deshan Sun and En Yu and Fukun Yin and Gang Yu and Hao Nie and Haoran Lv and Hanpeng Hu and Jia Wang and Jian Zhou and Jianjian Sun and Kaijun Tan and Kang An and Kangheng Lin and Liang Zhao and Mei Chen and Peng Xing and Rui Wang and Shiyu Liu and Shutao Xia and Tianhao You and Wei Ji and Xianfang Zeng and Xin Han and Xuelin Zhang and Yana Wei and Yanming Xu and Yimin Jiang and Yingming Wang and Yu Zhou and Yucheng Han and Ziyang Meng and Binxing Jiao and Daxin Jiang and Xiangyu Zhang and Yibo Zhu},
|
| 89 |
+
journal={arXiv preprint arXiv:2508.10711},
|
| 90 |
+
year={2025}
|
| 91 |
+
}
|
| 92 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|begin_of_image|>": 151667,
|
| 5 |
+
"<|begin_of_prompt_refinement|>": 151670,
|
| 6 |
+
"<|begin_of_thinking|>": 151672,
|
| 7 |
+
"<|box_end|>": 151649,
|
| 8 |
+
"<|box_start|>": 151648,
|
| 9 |
+
"<|end_of_image|>": 151668,
|
| 10 |
+
"<|end_of_prompt_refinement|>": 151671,
|
| 11 |
+
"<|end_of_thinking|>": 151673,
|
| 12 |
+
"<|beginoftext|>": 151674,
|
| 13 |
+
"<|endoftext|>": 151643,
|
| 14 |
+
"<|file_sep|>": 151664,
|
| 15 |
+
"<|fim_middle|>": 151660,
|
| 16 |
+
"<|fim_pad|>": 151662,
|
| 17 |
+
"<|fim_prefix|>": 151659,
|
| 18 |
+
"<|fim_suffix|>": 151661,
|
| 19 |
+
"<|im_end|>": 151645,
|
| 20 |
+
"<|im_start|>": 151644,
|
| 21 |
+
"<|image_area|>": 151666,
|
| 22 |
+
"<|image_pad|>": 151655,
|
| 23 |
+
"<|image_placeholder|>": 151669,
|
| 24 |
+
"<|object_ref_end|>": 151647,
|
| 25 |
+
"<|object_ref_start|>": 151646,
|
| 26 |
+
"<|quad_end|>": 151651,
|
| 27 |
+
"<|quad_start|>": 151650,
|
| 28 |
+
"<|repo_name|>": 151663,
|
| 29 |
+
"<|video_pad|>": 151656,
|
| 30 |
+
"<|vision_end|>": 151653,
|
| 31 |
+
"<|vision_pad|>": 151654,
|
| 32 |
+
"<|vision_start|>": 151652,
|
| 33 |
+
"[PAD]": 151665
|
| 34 |
+
}
|
assets/comparision.png
ADDED
|
Git LFS Details
|
config.json
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_attn_implementation_autoset": true,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"auto_map":{
|
| 7 |
+
"AutoConfig": "models/config.NextStepConfig",
|
| 8 |
+
"AutoModel": "models/nextstep_model.NextStep"
|
| 9 |
+
},
|
| 10 |
+
"attention_bias": true,
|
| 11 |
+
"attention_dropout": 0.0,
|
| 12 |
+
"base_image_grid_size": 64,
|
| 13 |
+
"boi": 151667,
|
| 14 |
+
"bos_token_id": 151643,
|
| 15 |
+
"create_kwargs": {
|
| 16 |
+
"snr_type": "lognorm"
|
| 17 |
+
},
|
| 18 |
+
"eoi": 151668,
|
| 19 |
+
"eos_token_id": 151643,
|
| 20 |
+
"genloss_batch_mul": 4,
|
| 21 |
+
"genloss_depth": 12,
|
| 22 |
+
"genloss_net_arch": "mlp",
|
| 23 |
+
"genloss_num_sampling_steps": "100",
|
| 24 |
+
"genloss_type": "transport",
|
| 25 |
+
"genloss_width": 1536,
|
| 26 |
+
"head_dim": 128,
|
| 27 |
+
"hidden_act": "silu",
|
| 28 |
+
"hidden_size": 5120,
|
| 29 |
+
"image_decoder_arch": "Trans_E",
|
| 30 |
+
"image_encoder_name": null,
|
| 31 |
+
"image_feature_layer": -2,
|
| 32 |
+
"image_loss_weight": 1.0,
|
| 33 |
+
"image_placeholder_id": 151669,
|
| 34 |
+
"image_size": 64,
|
| 35 |
+
"initializer_range": 0.02,
|
| 36 |
+
"intermediate_size": 13824,
|
| 37 |
+
"lm_loss_weight": 0.01,
|
| 38 |
+
"max_position_embeddings": 131072,
|
| 39 |
+
"max_window_layers": 48,
|
| 40 |
+
"mlp_bias": false,
|
| 41 |
+
"model_type": "nextstep",
|
| 42 |
+
"noise_strength": 0.0,
|
| 43 |
+
"num_attention_heads": 40,
|
| 44 |
+
"num_channels": 16,
|
| 45 |
+
"num_hidden_layers": 48,
|
| 46 |
+
"num_key_value_heads": 8,
|
| 47 |
+
"o_attention_bias": false,
|
| 48 |
+
"pad_token_id_added": 151665,
|
| 49 |
+
"patch_size": 2,
|
| 50 |
+
"pretraining_tp": 1,
|
| 51 |
+
"rms_norm_eps": 1e-05,
|
| 52 |
+
"rope_scaling": null,
|
| 53 |
+
"rope_theta": 1000000.0,
|
| 54 |
+
"sliding_window": 131072,
|
| 55 |
+
"tie_word_embeddings": false,
|
| 56 |
+
"torch_dtype": "bfloat16",
|
| 57 |
+
"transformers_version": "4.55.0",
|
| 58 |
+
"use_2d_rope": false,
|
| 59 |
+
"use_cache": true,
|
| 60 |
+
"use_gen_pos_embed": false,
|
| 61 |
+
"use_mlp_before_lm_head": false,
|
| 62 |
+
"use_sliding_window": false,
|
| 63 |
+
"use_token_length_weight": false,
|
| 64 |
+
"vae_name_or_path": "vae/",
|
| 65 |
+
"vocab_size": 152064
|
| 66 |
+
}
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 29907628160
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"embed_tokens.weight": "pytorch-model-00004-of-00004.safetensors",
|
| 7 |
+
"image_head.net.cond_embed.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 8 |
+
"image_head.net.cond_embed.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 9 |
+
"image_head.net.final_layer.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 10 |
+
"image_head.net.final_layer.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 11 |
+
"image_head.net.final_layer.linear.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 12 |
+
"image_head.net.final_layer.linear.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 13 |
+
"image_head.net.input_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 14 |
+
"image_head.net.input_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 15 |
+
"image_head.net.res_blocks.0.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 16 |
+
"image_head.net.res_blocks.0.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 17 |
+
"image_head.net.res_blocks.0.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 18 |
+
"image_head.net.res_blocks.0.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 19 |
+
"image_head.net.res_blocks.0.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 20 |
+
"image_head.net.res_blocks.0.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 21 |
+
"image_head.net.res_blocks.0.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 22 |
+
"image_head.net.res_blocks.0.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 23 |
+
"image_head.net.res_blocks.1.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 24 |
+
"image_head.net.res_blocks.1.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 25 |
+
"image_head.net.res_blocks.1.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 26 |
+
"image_head.net.res_blocks.1.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 27 |
+
"image_head.net.res_blocks.1.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 28 |
+
"image_head.net.res_blocks.1.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 29 |
+
"image_head.net.res_blocks.1.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 30 |
+
"image_head.net.res_blocks.1.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 31 |
+
"image_head.net.res_blocks.10.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 32 |
+
"image_head.net.res_blocks.10.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 33 |
+
"image_head.net.res_blocks.10.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 34 |
+
"image_head.net.res_blocks.10.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 35 |
+
"image_head.net.res_blocks.10.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 36 |
+
"image_head.net.res_blocks.10.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 37 |
+
"image_head.net.res_blocks.10.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 38 |
+
"image_head.net.res_blocks.10.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 39 |
+
"image_head.net.res_blocks.11.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 40 |
+
"image_head.net.res_blocks.11.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 41 |
+
"image_head.net.res_blocks.11.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 42 |
+
"image_head.net.res_blocks.11.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 43 |
+
"image_head.net.res_blocks.11.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 44 |
+
"image_head.net.res_blocks.11.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 45 |
+
"image_head.net.res_blocks.11.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 46 |
+
"image_head.net.res_blocks.11.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 47 |
+
"image_head.net.res_blocks.2.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 48 |
+
"image_head.net.res_blocks.2.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 49 |
+
"image_head.net.res_blocks.2.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 50 |
+
"image_head.net.res_blocks.2.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 51 |
+
"image_head.net.res_blocks.2.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 52 |
+
"image_head.net.res_blocks.2.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 53 |
+
"image_head.net.res_blocks.2.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 54 |
+
"image_head.net.res_blocks.2.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 55 |
+
"image_head.net.res_blocks.3.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 56 |
+
"image_head.net.res_blocks.3.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 57 |
+
"image_head.net.res_blocks.3.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 58 |
+
"image_head.net.res_blocks.3.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 59 |
+
"image_head.net.res_blocks.3.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 60 |
+
"image_head.net.res_blocks.3.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 61 |
+
"image_head.net.res_blocks.3.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 62 |
+
"image_head.net.res_blocks.3.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 63 |
+
"image_head.net.res_blocks.4.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 64 |
+
"image_head.net.res_blocks.4.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 65 |
+
"image_head.net.res_blocks.4.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 66 |
+
"image_head.net.res_blocks.4.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 67 |
+
"image_head.net.res_blocks.4.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 68 |
+
"image_head.net.res_blocks.4.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 69 |
+
"image_head.net.res_blocks.4.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 70 |
+
"image_head.net.res_blocks.4.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 71 |
+
"image_head.net.res_blocks.5.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 72 |
+
"image_head.net.res_blocks.5.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 73 |
+
"image_head.net.res_blocks.5.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 74 |
+
"image_head.net.res_blocks.5.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 75 |
+
"image_head.net.res_blocks.5.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 76 |
+
"image_head.net.res_blocks.5.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 77 |
+
"image_head.net.res_blocks.5.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 78 |
+
"image_head.net.res_blocks.5.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 79 |
+
"image_head.net.res_blocks.6.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 80 |
+
"image_head.net.res_blocks.6.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 81 |
+
"image_head.net.res_blocks.6.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 82 |
+
"image_head.net.res_blocks.6.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 83 |
+
"image_head.net.res_blocks.6.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 84 |
+
"image_head.net.res_blocks.6.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 85 |
+
"image_head.net.res_blocks.6.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 86 |
+
"image_head.net.res_blocks.6.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 87 |
+
"image_head.net.res_blocks.7.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 88 |
+
"image_head.net.res_blocks.7.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 89 |
+
"image_head.net.res_blocks.7.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 90 |
+
"image_head.net.res_blocks.7.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 91 |
+
"image_head.net.res_blocks.7.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 92 |
+
"image_head.net.res_blocks.7.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 93 |
+
"image_head.net.res_blocks.7.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 94 |
+
"image_head.net.res_blocks.7.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 95 |
+
"image_head.net.res_blocks.8.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 96 |
+
"image_head.net.res_blocks.8.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 97 |
+
"image_head.net.res_blocks.8.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 98 |
+
"image_head.net.res_blocks.8.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 99 |
+
"image_head.net.res_blocks.8.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 100 |
+
"image_head.net.res_blocks.8.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 101 |
+
"image_head.net.res_blocks.8.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 102 |
+
"image_head.net.res_blocks.8.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 103 |
+
"image_head.net.res_blocks.9.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 104 |
+
"image_head.net.res_blocks.9.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 105 |
+
"image_head.net.res_blocks.9.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 106 |
+
"image_head.net.res_blocks.9.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 107 |
+
"image_head.net.res_blocks.9.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 108 |
+
"image_head.net.res_blocks.9.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 109 |
+
"image_head.net.res_blocks.9.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 110 |
+
"image_head.net.res_blocks.9.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 111 |
+
"image_head.net.time_embed.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 112 |
+
"image_head.net.time_embed.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 113 |
+
"image_head.net.time_embed.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 114 |
+
"image_head.net.time_embed.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 115 |
+
"image_in_projector.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 116 |
+
"image_in_projector.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 117 |
+
"image_out_projector.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 118 |
+
"image_out_projector.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 119 |
+
"layers.0.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 120 |
+
"layers.0.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 121 |
+
"layers.0.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 122 |
+
"layers.0.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 123 |
+
"layers.0.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 124 |
+
"layers.0.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 125 |
+
"layers.0.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 126 |
+
"layers.0.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 127 |
+
"layers.0.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 128 |
+
"layers.0.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 129 |
+
"layers.0.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 130 |
+
"layers.0.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 131 |
+
"layers.1.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 132 |
+
"layers.1.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 133 |
+
"layers.1.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 134 |
+
"layers.1.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 135 |
+
"layers.1.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 136 |
+
"layers.1.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 137 |
+
"layers.1.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 138 |
+
"layers.1.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 139 |
+
"layers.1.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 140 |
+
"layers.1.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 141 |
+
"layers.1.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 142 |
+
"layers.1.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 143 |
+
"layers.10.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 144 |
+
"layers.10.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 145 |
+
"layers.10.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 146 |
+
"layers.10.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 147 |
+
"layers.10.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 148 |
+
"layers.10.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 149 |
+
"layers.10.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 150 |
+
"layers.10.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 151 |
+
"layers.10.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 152 |
+
"layers.10.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 153 |
+
"layers.10.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 154 |
+
"layers.10.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 155 |
+
"layers.11.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 156 |
+
"layers.11.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 157 |
+
"layers.11.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 158 |
+
"layers.11.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 159 |
+
"layers.11.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 160 |
+
"layers.11.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 161 |
+
"layers.11.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 162 |
+
"layers.11.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 163 |
+
"layers.11.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 164 |
+
"layers.11.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 165 |
+
"layers.11.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 166 |
+
"layers.11.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 167 |
+
"layers.12.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 168 |
+
"layers.12.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 169 |
+
"layers.12.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 170 |
+
"layers.12.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 171 |
+
"layers.12.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 172 |
+
"layers.12.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 173 |
+
"layers.12.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 174 |
+
"layers.12.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 175 |
+
"layers.12.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 176 |
+
"layers.12.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 177 |
+
"layers.12.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 178 |
+
"layers.12.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 179 |
+
"layers.13.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 180 |
+
"layers.13.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 181 |
+
"layers.13.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 182 |
+
"layers.13.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 183 |
+
"layers.13.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 184 |
+
"layers.13.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 185 |
+
"layers.13.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 186 |
+
"layers.13.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 187 |
+
"layers.13.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 188 |
+
"layers.13.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 189 |
+
"layers.13.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 190 |
+
"layers.13.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 191 |
+
"layers.14.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 192 |
+
"layers.14.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 193 |
+
"layers.14.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 194 |
+
"layers.14.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 195 |
+
"layers.14.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 196 |
+
"layers.14.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 197 |
+
"layers.14.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 198 |
+
"layers.14.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 199 |
+
"layers.14.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 200 |
+
"layers.14.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 201 |
+
"layers.14.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 202 |
+
"layers.14.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 203 |
+
"layers.15.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 204 |
+
"layers.15.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 205 |
+
"layers.15.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 206 |
+
"layers.15.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 207 |
+
"layers.15.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 208 |
+
"layers.15.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 209 |
+
"layers.15.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 210 |
+
"layers.15.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 211 |
+
"layers.15.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 212 |
+
"layers.15.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 213 |
+
"layers.15.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 214 |
+
"layers.15.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 215 |
+
"layers.16.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 216 |
+
"layers.16.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 217 |
+
"layers.16.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 218 |
+
"layers.16.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 219 |
+
"layers.16.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 220 |
+
"layers.16.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 221 |
+
"layers.16.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 222 |
+
"layers.16.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 223 |
+
"layers.16.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 224 |
+
"layers.16.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 225 |
+
"layers.16.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 226 |
+
"layers.16.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 227 |
+
"layers.17.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 228 |
+
"layers.17.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 229 |
+
"layers.17.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 230 |
+
"layers.17.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 231 |
+
"layers.17.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 232 |
+
"layers.17.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 233 |
+
"layers.17.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 234 |
+
"layers.17.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 235 |
+
"layers.17.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 236 |
+
"layers.17.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 237 |
+
"layers.17.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 238 |
+
"layers.17.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 239 |
+
"layers.18.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 240 |
+
"layers.18.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 241 |
+
"layers.18.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 242 |
+
"layers.18.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 243 |
+
"layers.18.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 244 |
+
"layers.18.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 245 |
+
"layers.18.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 246 |
+
"layers.18.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 247 |
+
"layers.18.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 248 |
+
"layers.18.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 249 |
+
"layers.18.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 250 |
+
"layers.18.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 251 |
+
"layers.19.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 252 |
+
"layers.19.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 253 |
+
"layers.19.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 254 |
+
"layers.19.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 255 |
+
"layers.19.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 256 |
+
"layers.19.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 257 |
+
"layers.19.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 258 |
+
"layers.19.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 259 |
+
"layers.19.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 260 |
+
"layers.19.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 261 |
+
"layers.19.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 262 |
+
"layers.19.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 263 |
+
"layers.2.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 264 |
+
"layers.2.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 265 |
+
"layers.2.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 266 |
+
"layers.2.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 267 |
+
"layers.2.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 268 |
+
"layers.2.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 269 |
+
"layers.2.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 270 |
+
"layers.2.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 271 |
+
"layers.2.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 272 |
+
"layers.2.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 273 |
+
"layers.2.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 274 |
+
"layers.2.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 275 |
+
"layers.20.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 276 |
+
"layers.20.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 277 |
+
"layers.20.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 278 |
+
"layers.20.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 279 |
+
"layers.20.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 280 |
+
"layers.20.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 281 |
+
"layers.20.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 282 |
+
"layers.20.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 283 |
+
"layers.20.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 284 |
+
"layers.20.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 285 |
+
"layers.20.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 286 |
+
"layers.20.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 287 |
+
"layers.21.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 288 |
+
"layers.21.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 289 |
+
"layers.21.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 290 |
+
"layers.21.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 291 |
+
"layers.21.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 292 |
+
"layers.21.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 293 |
+
"layers.21.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 294 |
+
"layers.21.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 295 |
+
"layers.21.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 296 |
+
"layers.21.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 297 |
+
"layers.21.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 298 |
+
"layers.21.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 299 |
+
"layers.22.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 300 |
+
"layers.22.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 301 |
+
"layers.22.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 302 |
+
"layers.22.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 303 |
+
"layers.22.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 304 |
+
"layers.22.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 305 |
+
"layers.22.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 306 |
+
"layers.22.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 307 |
+
"layers.22.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 308 |
+
"layers.22.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 309 |
+
"layers.22.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 310 |
+
"layers.22.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 311 |
+
"layers.23.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 312 |
+
"layers.23.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 313 |
+
"layers.23.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 314 |
+
"layers.23.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 315 |
+
"layers.23.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 316 |
+
"layers.23.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 317 |
+
"layers.23.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 318 |
+
"layers.23.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 319 |
+
"layers.23.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 320 |
+
"layers.23.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 321 |
+
"layers.23.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 322 |
+
"layers.23.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 323 |
+
"layers.24.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 324 |
+
"layers.24.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 325 |
+
"layers.24.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 326 |
+
"layers.24.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 327 |
+
"layers.24.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 328 |
+
"layers.24.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 329 |
+
"layers.24.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 330 |
+
"layers.24.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 331 |
+
"layers.24.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 332 |
+
"layers.24.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 333 |
+
"layers.24.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
|
| 334 |
+
"layers.24.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 335 |
+
"layers.25.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 336 |
+
"layers.25.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 337 |
+
"layers.25.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 338 |
+
"layers.25.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 339 |
+
"layers.25.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 340 |
+
"layers.25.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 341 |
+
"layers.25.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 342 |
+
"layers.25.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
|
| 343 |
+
"layers.25.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 344 |
+
"layers.25.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 345 |
+
"layers.25.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 346 |
+
"layers.25.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 347 |
+
"layers.26.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 348 |
+
"layers.26.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 349 |
+
"layers.26.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 350 |
+
"layers.26.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 351 |
+
"layers.26.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 352 |
+
"layers.26.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 353 |
+
"layers.26.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 354 |
+
"layers.26.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 355 |
+
"layers.26.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 356 |
+
"layers.26.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 357 |
+
"layers.26.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 358 |
+
"layers.26.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 359 |
+
"layers.27.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 360 |
+
"layers.27.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 361 |
+
"layers.27.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 362 |
+
"layers.27.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 363 |
+
"layers.27.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 364 |
+
"layers.27.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 365 |
+
"layers.27.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 366 |
+
"layers.27.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 367 |
+
"layers.27.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 368 |
+
"layers.27.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 369 |
+
"layers.27.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 370 |
+
"layers.27.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 371 |
+
"layers.28.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 372 |
+
"layers.28.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 373 |
+
"layers.28.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 374 |
+
"layers.28.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 375 |
+
"layers.28.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 376 |
+
"layers.28.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 377 |
+
"layers.28.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 378 |
+
"layers.28.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 379 |
+
"layers.28.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 380 |
+
"layers.28.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 381 |
+
"layers.28.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 382 |
+
"layers.28.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 383 |
+
"layers.29.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 384 |
+
"layers.29.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 385 |
+
"layers.29.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 386 |
+
"layers.29.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 387 |
+
"layers.29.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 388 |
+
"layers.29.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 389 |
+
"layers.29.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 390 |
+
"layers.29.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 391 |
+
"layers.29.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 392 |
+
"layers.29.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 393 |
+
"layers.29.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 394 |
+
"layers.29.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 395 |
+
"layers.3.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 396 |
+
"layers.3.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 397 |
+
"layers.3.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 398 |
+
"layers.3.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 399 |
+
"layers.3.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 400 |
+
"layers.3.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 401 |
+
"layers.3.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 402 |
+
"layers.3.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 403 |
+
"layers.3.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 404 |
+
"layers.3.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 405 |
+
"layers.3.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 406 |
+
"layers.3.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 407 |
+
"layers.30.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 408 |
+
"layers.30.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 409 |
+
"layers.30.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 410 |
+
"layers.30.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 411 |
+
"layers.30.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 412 |
+
"layers.30.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 413 |
+
"layers.30.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 414 |
+
"layers.30.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 415 |
+
"layers.30.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 416 |
+
"layers.30.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 417 |
+
"layers.30.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 418 |
+
"layers.30.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 419 |
+
"layers.31.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 420 |
+
"layers.31.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 421 |
+
"layers.31.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 422 |
+
"layers.31.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 423 |
+
"layers.31.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 424 |
+
"layers.31.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 425 |
+
"layers.31.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 426 |
+
"layers.31.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 427 |
+
"layers.31.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 428 |
+
"layers.31.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 429 |
+
"layers.31.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 430 |
+
"layers.31.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 431 |
+
"layers.32.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 432 |
+
"layers.32.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 433 |
+
"layers.32.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 434 |
+
"layers.32.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 435 |
+
"layers.32.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 436 |
+
"layers.32.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 437 |
+
"layers.32.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 438 |
+
"layers.32.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 439 |
+
"layers.32.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 440 |
+
"layers.32.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 441 |
+
"layers.32.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 442 |
+
"layers.32.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 443 |
+
"layers.33.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 444 |
+
"layers.33.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 445 |
+
"layers.33.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 446 |
+
"layers.33.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 447 |
+
"layers.33.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 448 |
+
"layers.33.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 449 |
+
"layers.33.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 450 |
+
"layers.33.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 451 |
+
"layers.33.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 452 |
+
"layers.33.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 453 |
+
"layers.33.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 454 |
+
"layers.33.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 455 |
+
"layers.34.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 456 |
+
"layers.34.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 457 |
+
"layers.34.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 458 |
+
"layers.34.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 459 |
+
"layers.34.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 460 |
+
"layers.34.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 461 |
+
"layers.34.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 462 |
+
"layers.34.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 463 |
+
"layers.34.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 464 |
+
"layers.34.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 465 |
+
"layers.34.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 466 |
+
"layers.34.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 467 |
+
"layers.35.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 468 |
+
"layers.35.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 469 |
+
"layers.35.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 470 |
+
"layers.35.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 471 |
+
"layers.35.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 472 |
+
"layers.35.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 473 |
+
"layers.35.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 474 |
+
"layers.35.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 475 |
+
"layers.35.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 476 |
+
"layers.35.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 477 |
+
"layers.35.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 478 |
+
"layers.35.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 479 |
+
"layers.36.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 480 |
+
"layers.36.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 481 |
+
"layers.36.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 482 |
+
"layers.36.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 483 |
+
"layers.36.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 484 |
+
"layers.36.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 485 |
+
"layers.36.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 486 |
+
"layers.36.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 487 |
+
"layers.36.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 488 |
+
"layers.36.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 489 |
+
"layers.36.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 490 |
+
"layers.36.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 491 |
+
"layers.37.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 492 |
+
"layers.37.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 493 |
+
"layers.37.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 494 |
+
"layers.37.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 495 |
+
"layers.37.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 496 |
+
"layers.37.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 497 |
+
"layers.37.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 498 |
+
"layers.37.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 499 |
+
"layers.37.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 500 |
+
"layers.37.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 501 |
+
"layers.37.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 502 |
+
"layers.37.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 503 |
+
"layers.38.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 504 |
+
"layers.38.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 505 |
+
"layers.38.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 506 |
+
"layers.38.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 507 |
+
"layers.38.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 508 |
+
"layers.38.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 509 |
+
"layers.38.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 510 |
+
"layers.38.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 511 |
+
"layers.38.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 512 |
+
"layers.38.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 513 |
+
"layers.38.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 514 |
+
"layers.38.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 515 |
+
"layers.39.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 516 |
+
"layers.39.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 517 |
+
"layers.39.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 518 |
+
"layers.39.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 519 |
+
"layers.39.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 520 |
+
"layers.39.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 521 |
+
"layers.39.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 522 |
+
"layers.39.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 523 |
+
"layers.39.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 524 |
+
"layers.39.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 525 |
+
"layers.39.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 526 |
+
"layers.39.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 527 |
+
"layers.4.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 528 |
+
"layers.4.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 529 |
+
"layers.4.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 530 |
+
"layers.4.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 531 |
+
"layers.4.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 532 |
+
"layers.4.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 533 |
+
"layers.4.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 534 |
+
"layers.4.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 535 |
+
"layers.4.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 536 |
+
"layers.4.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 537 |
+
"layers.4.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 538 |
+
"layers.4.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 539 |
+
"layers.40.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 540 |
+
"layers.40.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 541 |
+
"layers.40.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 542 |
+
"layers.40.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 543 |
+
"layers.40.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 544 |
+
"layers.40.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 545 |
+
"layers.40.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 546 |
+
"layers.40.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 547 |
+
"layers.40.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 548 |
+
"layers.40.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 549 |
+
"layers.40.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
|
| 550 |
+
"layers.40.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 551 |
+
"layers.41.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 552 |
+
"layers.41.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 553 |
+
"layers.41.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 554 |
+
"layers.41.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 555 |
+
"layers.41.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 556 |
+
"layers.41.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 557 |
+
"layers.41.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 558 |
+
"layers.41.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
|
| 559 |
+
"layers.41.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 560 |
+
"layers.41.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 561 |
+
"layers.41.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 562 |
+
"layers.41.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 563 |
+
"layers.42.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 564 |
+
"layers.42.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 565 |
+
"layers.42.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 566 |
+
"layers.42.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 567 |
+
"layers.42.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 568 |
+
"layers.42.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 569 |
+
"layers.42.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 570 |
+
"layers.42.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 571 |
+
"layers.42.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 572 |
+
"layers.42.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 573 |
+
"layers.42.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 574 |
+
"layers.42.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 575 |
+
"layers.43.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 576 |
+
"layers.43.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 577 |
+
"layers.43.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 578 |
+
"layers.43.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 579 |
+
"layers.43.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 580 |
+
"layers.43.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 581 |
+
"layers.43.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 582 |
+
"layers.43.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 583 |
+
"layers.43.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 584 |
+
"layers.43.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 585 |
+
"layers.43.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 586 |
+
"layers.43.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 587 |
+
"layers.44.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 588 |
+
"layers.44.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 589 |
+
"layers.44.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 590 |
+
"layers.44.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 591 |
+
"layers.44.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 592 |
+
"layers.44.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 593 |
+
"layers.44.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 594 |
+
"layers.44.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 595 |
+
"layers.44.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 596 |
+
"layers.44.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 597 |
+
"layers.44.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 598 |
+
"layers.44.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 599 |
+
"layers.45.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 600 |
+
"layers.45.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 601 |
+
"layers.45.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 602 |
+
"layers.45.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 603 |
+
"layers.45.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 604 |
+
"layers.45.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 605 |
+
"layers.45.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 606 |
+
"layers.45.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 607 |
+
"layers.45.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 608 |
+
"layers.45.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 609 |
+
"layers.45.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 610 |
+
"layers.45.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 611 |
+
"layers.46.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 612 |
+
"layers.46.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 613 |
+
"layers.46.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 614 |
+
"layers.46.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 615 |
+
"layers.46.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 616 |
+
"layers.46.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 617 |
+
"layers.46.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 618 |
+
"layers.46.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 619 |
+
"layers.46.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 620 |
+
"layers.46.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 621 |
+
"layers.46.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 622 |
+
"layers.46.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 623 |
+
"layers.47.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 624 |
+
"layers.47.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 625 |
+
"layers.47.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 626 |
+
"layers.47.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 627 |
+
"layers.47.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 628 |
+
"layers.47.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 629 |
+
"layers.47.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 630 |
+
"layers.47.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 631 |
+
"layers.47.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 632 |
+
"layers.47.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 633 |
+
"layers.47.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 634 |
+
"layers.47.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 635 |
+
"layers.5.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 636 |
+
"layers.5.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 637 |
+
"layers.5.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 638 |
+
"layers.5.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 639 |
+
"layers.5.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 640 |
+
"layers.5.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 641 |
+
"layers.5.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 642 |
+
"layers.5.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 643 |
+
"layers.5.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 644 |
+
"layers.5.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 645 |
+
"layers.5.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 646 |
+
"layers.5.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 647 |
+
"layers.6.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 648 |
+
"layers.6.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 649 |
+
"layers.6.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 650 |
+
"layers.6.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 651 |
+
"layers.6.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 652 |
+
"layers.6.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 653 |
+
"layers.6.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 654 |
+
"layers.6.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 655 |
+
"layers.6.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 656 |
+
"layers.6.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 657 |
+
"layers.6.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 658 |
+
"layers.6.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 659 |
+
"layers.7.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 660 |
+
"layers.7.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 661 |
+
"layers.7.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 662 |
+
"layers.7.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 663 |
+
"layers.7.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 664 |
+
"layers.7.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 665 |
+
"layers.7.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 666 |
+
"layers.7.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 667 |
+
"layers.7.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 668 |
+
"layers.7.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 669 |
+
"layers.7.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 670 |
+
"layers.7.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 671 |
+
"layers.8.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 672 |
+
"layers.8.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 673 |
+
"layers.8.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 674 |
+
"layers.8.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 675 |
+
"layers.8.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 676 |
+
"layers.8.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 677 |
+
"layers.8.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 678 |
+
"layers.8.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 679 |
+
"layers.8.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 680 |
+
"layers.8.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 681 |
+
"layers.8.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 682 |
+
"layers.8.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 683 |
+
"layers.9.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 684 |
+
"layers.9.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 685 |
+
"layers.9.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 686 |
+
"layers.9.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 687 |
+
"layers.9.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 688 |
+
"layers.9.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 689 |
+
"layers.9.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 690 |
+
"layers.9.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 691 |
+
"layers.9.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 692 |
+
"layers.9.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 693 |
+
"layers.9.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
|
| 694 |
+
"layers.9.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 695 |
+
"lm_head.weight": "pytorch-model-00003-of-00004.safetensors",
|
| 696 |
+
"norm.weight": "pytorch-model-00003-of-00004.safetensors"
|
| 697 |
+
}
|
| 698 |
+
}
|
models/__init__.py
ADDED
|
File without changes
|
models/gen_pipeline.py
ADDED
|
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import inspect
|
| 5 |
+
import random
|
| 6 |
+
from typing import Literal
|
| 7 |
+
from dataclasses import dataclass, field
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import torchvision.transforms as transforms
|
| 13 |
+
import numpy as np
|
| 14 |
+
from PIL import Image
|
| 15 |
+
from tqdm.auto import tqdm
|
| 16 |
+
from loguru import logger
|
| 17 |
+
|
| 18 |
+
from transformers import AutoTokenizer
|
| 19 |
+
from transformers.cache_utils import Cache
|
| 20 |
+
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL as DiffusersAutoencoderKL
|
| 21 |
+
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
| 22 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
from .nextstep_model import NextStep
|
| 26 |
+
except ImportError:
|
| 27 |
+
from nextstep_model import NextStep
|
| 28 |
+
|
| 29 |
+
DEFAULT_IMAGE_AREA_TOKEN = "<|image_area|>"
|
| 30 |
+
@dataclass
|
| 31 |
+
class AutoEncoderParams:
|
| 32 |
+
resolution: int = 256
|
| 33 |
+
in_channels: int = 3
|
| 34 |
+
ch: int = 128
|
| 35 |
+
out_ch: int = 3
|
| 36 |
+
ch_mult: list[int] = field(default_factory=lambda: [1, 2, 4, 4])
|
| 37 |
+
num_res_blocks: int = 2
|
| 38 |
+
z_channels: int = 16
|
| 39 |
+
scaling_factor: float = 1
|
| 40 |
+
shift_factor: float = 0
|
| 41 |
+
deterministic: bool = True
|
| 42 |
+
encoder_norm: bool = True
|
| 43 |
+
psz: int | None = 1
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class AutoencoderKL(DiffusersAutoencoderKL):
|
| 47 |
+
"""
|
| 48 |
+
继承自 diffusers 的 AutoencoderKL,添加了 patchify 和 encoder_norm 功能。
|
| 49 |
+
这样可以复用 diffusers 的完整实现,只扩展必要的功能。
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(self, params: AutoEncoderParams):
|
| 53 |
+
"""
|
| 54 |
+
从 AutoEncoderParams 初始化模型,转换为 diffusers 格式
|
| 55 |
+
"""
|
| 56 |
+
# 转换参数格式为 diffusers 的 AutoencoderKL 格式
|
| 57 |
+
down_block_types = ["DownEncoderBlock2D"] * len(params.ch_mult)
|
| 58 |
+
up_block_types = ["UpDecoderBlock2D"] * len(params.ch_mult)
|
| 59 |
+
block_out_channels = [params.ch * m for m in params.ch_mult]
|
| 60 |
+
|
| 61 |
+
# 调用父类初始化,创建 diffusers 的 encoder 和 decoder
|
| 62 |
+
super().__init__(
|
| 63 |
+
in_channels=params.in_channels,
|
| 64 |
+
out_channels=params.out_ch,
|
| 65 |
+
down_block_types=tuple(down_block_types),
|
| 66 |
+
up_block_types=tuple(up_block_types),
|
| 67 |
+
block_out_channels=tuple(block_out_channels),
|
| 68 |
+
layers_per_block=params.num_res_blocks,
|
| 69 |
+
latent_channels=params.z_channels,
|
| 70 |
+
norm_num_groups=32,
|
| 71 |
+
sample_size=params.resolution,
|
| 72 |
+
scaling_factor=params.scaling_factor,
|
| 73 |
+
shift_factor=params.shift_factor,
|
| 74 |
+
act_fn="silu",
|
| 75 |
+
mid_block_add_attention=True,
|
| 76 |
+
use_quant_conv=False, # 旧的 VAE 没有使用 quant_conv
|
| 77 |
+
use_post_quant_conv=False,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# 保存自定义参数
|
| 81 |
+
self.params = params
|
| 82 |
+
self.encoder_norm = params.encoder_norm
|
| 83 |
+
self.psz = params.psz
|
| 84 |
+
self.deterministic = params.deterministic
|
| 85 |
+
|
| 86 |
+
def layer_norm_2d(self, input: torch.Tensor, normalized_shape: torch.Size, eps: float = 1e-6) -> torch.Tensor:
|
| 87 |
+
"""Layer normalization for 2D spatial features."""
|
| 88 |
+
# input.shape = (bsz, c, h, w)
|
| 89 |
+
return F.layer_norm(
|
| 90 |
+
input.permute(0, 2, 3, 1), normalized_shape, None, None, eps
|
| 91 |
+
).permute(0, 3, 1, 2)
|
| 92 |
+
|
| 93 |
+
def patchify(self, img: torch.Tensor):
|
| 94 |
+
"""
|
| 95 |
+
img: (bsz, C, H, W)
|
| 96 |
+
x: (bsz, patch_size**2 * C, H / patch_size, W / patch_size)
|
| 97 |
+
"""
|
| 98 |
+
bsz, c, h, w = img.shape
|
| 99 |
+
p = self.psz
|
| 100 |
+
h_, w_ = h // p, w // p
|
| 101 |
+
|
| 102 |
+
img = img.reshape(bsz, c, h_, p, w_, p)
|
| 103 |
+
img = torch.einsum("nchpwq->ncpqhw", img)
|
| 104 |
+
x = img.reshape(bsz, c * p**2, h_, w_)
|
| 105 |
+
return x
|
| 106 |
+
|
| 107 |
+
def unpatchify(self, x: torch.Tensor):
|
| 108 |
+
"""
|
| 109 |
+
x: (bsz, patch_size**2 * C, H / patch_size, W / patch_size)
|
| 110 |
+
img: (bsz, C, H, W)
|
| 111 |
+
"""
|
| 112 |
+
bsz = x.shape[0]
|
| 113 |
+
p = self.psz
|
| 114 |
+
c = self.config.latent_channels
|
| 115 |
+
h_, w_ = x.shape[2], x.shape[3]
|
| 116 |
+
|
| 117 |
+
x = x.reshape(bsz, c, p, p, h_, w_)
|
| 118 |
+
x = torch.einsum("ncpqhw->nchpwq", x)
|
| 119 |
+
img = x.reshape(bsz, c, h_ * p, w_ * p)
|
| 120 |
+
return img
|
| 121 |
+
|
| 122 |
+
def encode(self, x: torch.Tensor, return_dict: bool = True):
|
| 123 |
+
"""
|
| 124 |
+
重写 encode 方法以支持 patchify 和 encoder_norm
|
| 125 |
+
"""
|
| 126 |
+
# 使用父类的 encoder
|
| 127 |
+
h = self.encoder(x)
|
| 128 |
+
|
| 129 |
+
# 使用父类的 quant_conv(如果存在)
|
| 130 |
+
moments = self.quant_conv(h) if self.config.use_quant_conv else h
|
| 131 |
+
|
| 132 |
+
# 应用 patchify 和 normalization(如果启用)
|
| 133 |
+
mean, logvar = torch.chunk(moments, 2, dim=1)
|
| 134 |
+
|
| 135 |
+
if self.psz is not None:
|
| 136 |
+
mean = self.patchify(mean)
|
| 137 |
+
if self.encoder_norm:
|
| 138 |
+
mean = self.layer_norm_2d(mean, (mean.size(1),))
|
| 139 |
+
mean = self.unpatchify(mean)
|
| 140 |
+
|
| 141 |
+
moments = torch.cat([mean, logvar], dim=1).contiguous()
|
| 142 |
+
posterior = DiagonalGaussianDistribution(moments, deterministic=self.deterministic)
|
| 143 |
+
|
| 144 |
+
return (posterior,) if not return_dict else AutoencoderKLOutput(latent_dist=posterior)
|
| 145 |
+
|
| 146 |
+
@staticmethod
|
| 147 |
+
def _convert_old_keys_to_diffusers(state_dict, num_resolutions=4):
|
| 148 |
+
"""
|
| 149 |
+
将旧的自定义 VAE 键名转换为 diffusers AutoencoderKL 的键名
|
| 150 |
+
旧格式: encoder.down.X.block.Y -> 新格式: encoder.down_blocks.X.resnets.Y
|
| 151 |
+
|
| 152 |
+
注意:decoder 的 up_blocks 顺序需要反转,因为旧实现使用 insert(0, ...)
|
| 153 |
+
"""
|
| 154 |
+
import re
|
| 155 |
+
new_state_dict = {}
|
| 156 |
+
|
| 157 |
+
# 定义替换规则
|
| 158 |
+
replacements = [
|
| 159 |
+
# 通用替换
|
| 160 |
+
(".nin_shortcut.", ".conv_shortcut."),
|
| 161 |
+
(".norm_out.", ".conv_norm_out."),
|
| 162 |
+
# Encoder down blocks
|
| 163 |
+
(".down.", ".down_blocks."),
|
| 164 |
+
(".block.", ".resnets."),
|
| 165 |
+
(".downsample.", ".downsamplers.0."),
|
| 166 |
+
# Encoder mid blocks
|
| 167 |
+
(".mid.block_1.", ".mid_block.resnets.0."),
|
| 168 |
+
(".mid.block_2.", ".mid_block.resnets.1."),
|
| 169 |
+
(".mid.attn_1.norm.", ".mid_block.attentions.0.group_norm."),
|
| 170 |
+
(".mid.attn_1.q.", ".mid_block.attentions.0.to_q."),
|
| 171 |
+
(".mid.attn_1.k.", ".mid_block.attentions.0.to_k."),
|
| 172 |
+
(".mid.attn_1.v.", ".mid_block.attentions.0.to_v."),
|
| 173 |
+
(".mid.attn_1.proj_out.", ".mid_block.attentions.0.to_out.0."),
|
| 174 |
+
# Decoder up blocks
|
| 175 |
+
(".upsample.", ".upsamplers.0."),
|
| 176 |
+
]
|
| 177 |
+
|
| 178 |
+
for key, value in state_dict.items():
|
| 179 |
+
new_key = key
|
| 180 |
+
|
| 181 |
+
# 跳过不需要转换的键
|
| 182 |
+
if any(skip in key for skip in ["conv_in", "conv_out"]) and ("encoder." in key or "decoder." in key):
|
| 183 |
+
new_state_dict[new_key] = value
|
| 184 |
+
continue
|
| 185 |
+
|
| 186 |
+
# Encoder 转换
|
| 187 |
+
if key.startswith("encoder."):
|
| 188 |
+
for old_pattern, new_pattern in replacements:
|
| 189 |
+
new_key = new_key.replace(old_pattern, new_pattern)
|
| 190 |
+
|
| 191 |
+
# Decoder 转换
|
| 192 |
+
elif key.startswith("decoder."):
|
| 193 |
+
# 处理 up blocks 的索引反转
|
| 194 |
+
if ".up." in key:
|
| 195 |
+
match = re.search(r'\.up\.(\d+)\.', key)
|
| 196 |
+
if match:
|
| 197 |
+
old_idx = int(match.group(1))
|
| 198 |
+
new_idx = num_resolutions - 1 - old_idx
|
| 199 |
+
new_key = re.sub(r'\.up\.\d+\.', f'.up_blocks.{new_idx}.', key)
|
| 200 |
+
else:
|
| 201 |
+
new_key = new_key.replace(".up.", ".up_blocks.")
|
| 202 |
+
|
| 203 |
+
# 应用其他替换规则
|
| 204 |
+
for old_pattern, new_pattern in replacements:
|
| 205 |
+
new_key = new_key.replace(old_pattern, new_pattern)
|
| 206 |
+
|
| 207 |
+
# 处理 Conv2d (1x1) -> Linear 的权重形状转换
|
| 208 |
+
if "attentions" in new_key and "weight" in new_key and len(value.shape) == 4:
|
| 209 |
+
if value.shape[2] == 1 and value.shape[3] == 1:
|
| 210 |
+
value = value.squeeze(-1).squeeze(-1)
|
| 211 |
+
|
| 212 |
+
new_state_dict[new_key] = value
|
| 213 |
+
|
| 214 |
+
return new_state_dict
|
| 215 |
+
|
| 216 |
+
@classmethod
|
| 217 |
+
def from_pretrained(cls, model_path, **kwargs):
|
| 218 |
+
"""
|
| 219 |
+
从本地路径加载模型(兼容旧格式)
|
| 220 |
+
"""
|
| 221 |
+
config_path = os.path.join(model_path, "config.json")
|
| 222 |
+
ckpt_path = os.path.join(model_path, "checkpoint.pt")
|
| 223 |
+
|
| 224 |
+
if not os.path.isdir(model_path) or not os.path.isfile(ckpt_path):
|
| 225 |
+
raise ValueError(f"Invalid model path: {model_path}. Missing config.json or checkpoint.pt files.")
|
| 226 |
+
|
| 227 |
+
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
| 228 |
+
|
| 229 |
+
# 加载配置
|
| 230 |
+
config = {}
|
| 231 |
+
if os.path.isfile(config_path):
|
| 232 |
+
with open(config_path, "r") as f:
|
| 233 |
+
config = json.load(f)
|
| 234 |
+
config.update(kwargs)
|
| 235 |
+
|
| 236 |
+
# 过滤出 AutoEncoderParams 中的参数
|
| 237 |
+
param_signature = inspect.signature(AutoEncoderParams.__init__).parameters
|
| 238 |
+
valid_kwargs = {k: v for k, v in config.items() if k in param_signature}
|
| 239 |
+
|
| 240 |
+
# 记录被忽略的参数
|
| 241 |
+
ignored_params = [k for k in config.keys() if k not in param_signature]
|
| 242 |
+
if ignored_params:
|
| 243 |
+
logger.debug(f"Ignoring parameters: {ignored_params}")
|
| 244 |
+
|
| 245 |
+
params = AutoEncoderParams(**valid_kwargs)
|
| 246 |
+
model = cls(params)
|
| 247 |
+
|
| 248 |
+
# 转换旧格式的键名到 diffusers 格式
|
| 249 |
+
logger.info("Converting old VAE keys to diffusers format...")
|
| 250 |
+
state_dict = cls._convert_old_keys_to_diffusers(state_dict, num_resolutions=len(params.ch_mult))
|
| 251 |
+
|
| 252 |
+
try:
|
| 253 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
| 254 |
+
logger.info(f"Loaded state_dict from {ckpt_path}")
|
| 255 |
+
if msg.missing_keys:
|
| 256 |
+
logger.warning(f"Missing keys: {msg.missing_keys}")
|
| 257 |
+
# if msg.unexpected_keys:
|
| 258 |
+
# logger.warning(f"Unexpected keys: {msg.unexpected_keys}")
|
| 259 |
+
except Exception as e:
|
| 260 |
+
logger.error(f"Failed to load state_dict: {e}, using random initialization")
|
| 261 |
+
|
| 262 |
+
return model
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
class NextStepPipeline:
|
| 266 |
+
def __init__(
|
| 267 |
+
self,
|
| 268 |
+
model_name_or_path: str | None = None,
|
| 269 |
+
vae_name_or_path: str | None = None,
|
| 270 |
+
tokenizer: AutoTokenizer | None = None,
|
| 271 |
+
model: nn.Module | None = None,
|
| 272 |
+
vae: AutoencoderKL | None = None,
|
| 273 |
+
enable_gradient_checkpointing: bool = False,
|
| 274 |
+
attn_implementation: str | None = None, # "sdpa", "flash_attention_2", "eager"
|
| 275 |
+
device: str | None = "cuda",
|
| 276 |
+
dtype: torch.dtype | None = torch.bfloat16,
|
| 277 |
+
):
|
| 278 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 279 |
+
model_name_or_path,
|
| 280 |
+
local_files_only=True,
|
| 281 |
+
padding_side="left",
|
| 282 |
+
use_fast=True,
|
| 283 |
+
)
|
| 284 |
+
self.model: NextStep = NextStep.from_pretrained(model_name_or_path, local_files_only=True, enable_gradient_checkpointing=enable_gradient_checkpointing)
|
| 285 |
+
self.model.to(device=device,dtype=dtype)
|
| 286 |
+
|
| 287 |
+
self.tokenizer.add_eos_token = False
|
| 288 |
+
if vae_name_or_path is None:
|
| 289 |
+
vae_name_or_path = getattr(self.model.config, "vae_name_or_path", None)
|
| 290 |
+
vae_name_or_path = os.path.join(model_name_or_path, vae_name_or_path)
|
| 291 |
+
self.vae = AutoencoderKL.from_pretrained(vae_name_or_path).to(device=device,dtype=dtype)
|
| 292 |
+
|
| 293 |
+
vae_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 294 |
+
self.down_factor = vae_factor * self.model.config.latent_patch_size
|
| 295 |
+
self.shift_factor = getattr(self.vae.config, "shift_factor", 0.0)
|
| 296 |
+
self.scaling_factor = getattr(self.vae.config, "scaling_factor", 1.0)
|
| 297 |
+
|
| 298 |
+
self.boi = self.model.config.boi
|
| 299 |
+
self.eoi = self.model.config.eoi
|
| 300 |
+
|
| 301 |
+
self.image_placeholder_id = self.model.config.image_placeholder_id
|
| 302 |
+
self.pil2tensor = transforms.Compose(
|
| 303 |
+
[
|
| 304 |
+
transforms.ToTensor(),
|
| 305 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
| 306 |
+
]
|
| 307 |
+
)
|
| 308 |
+
self.device = self.model.device
|
| 309 |
+
self.dtype = self.model.dtype
|
| 310 |
+
|
| 311 |
+
def set_seed(self, seed: int, rank: int = 0):
|
| 312 |
+
random.seed(seed + rank)
|
| 313 |
+
np.random.seed(seed + rank)
|
| 314 |
+
torch.manual_seed(seed + rank)
|
| 315 |
+
torch.cuda.manual_seed_all(seed + rank)
|
| 316 |
+
torch.backends.cudnn.deterministic = True
|
| 317 |
+
os.environ["PYTHONHASHSEED"] = str(seed + rank)
|
| 318 |
+
|
| 319 |
+
def to_pil(self, image: torch.Tensor) -> Image.Image:
|
| 320 |
+
"""Convert PyTorch tensor to PIL image"""
|
| 321 |
+
if not isinstance(image, torch.Tensor):
|
| 322 |
+
raise TypeError(f"Expected torch.Tensor, got {type(image)}")
|
| 323 |
+
|
| 324 |
+
# 标准化到[0,1]并转换为uint8
|
| 325 |
+
image = (image / 2 + 0.5).clamp(0, 1).mul(255).round().to(torch.uint8)
|
| 326 |
+
image = image.cpu().permute(1, 2, 0).numpy()
|
| 327 |
+
|
| 328 |
+
# 处理单通道图像
|
| 329 |
+
if image.shape[-1] == 1:
|
| 330 |
+
image = image[:, :, 0]
|
| 331 |
+
mode = "L"
|
| 332 |
+
else:
|
| 333 |
+
mode = "RGB"
|
| 334 |
+
|
| 335 |
+
return Image.fromarray(image, mode=mode)
|
| 336 |
+
|
| 337 |
+
def to(self, device: str | None = None, dtype: torch.dtype | None = None):
|
| 338 |
+
if device is not None:
|
| 339 |
+
self.device = device
|
| 340 |
+
if dtype is not None:
|
| 341 |
+
self.dtype = dtype
|
| 342 |
+
self.model.to(self.device, dtype=self.dtype)
|
| 343 |
+
self.vae.to(self.device, dtype=self.dtype)
|
| 344 |
+
return self
|
| 345 |
+
|
| 346 |
+
def hw2str(self, h: int, w: int) -> str:
|
| 347 |
+
return f"{h}*{w}"
|
| 348 |
+
|
| 349 |
+
def _image_str(self, hw: tuple[int, int] = (256, 256)):
|
| 350 |
+
latent_hw = (hw[0] // self.down_factor, hw[1] // self.down_factor)
|
| 351 |
+
image_ids = [self.boi] + [self.image_placeholder_id] * (latent_hw[0] * latent_hw[1]) + [self.eoi]
|
| 352 |
+
image_str = DEFAULT_IMAGE_AREA_TOKEN + self.hw2str(*latent_hw) + self.tokenizer.decode(image_ids)
|
| 353 |
+
return image_str
|
| 354 |
+
|
| 355 |
+
def _check_input(
|
| 356 |
+
self, captions: str | list[str], images: Image.Image | list[Image.Image] | None
|
| 357 |
+
) -> tuple[list[str], list[Image.Image] | None]:
|
| 358 |
+
if not isinstance(captions, list):
|
| 359 |
+
captions = [captions]
|
| 360 |
+
if images is not None:
|
| 361 |
+
if not isinstance(images, list):
|
| 362 |
+
images = [images]
|
| 363 |
+
# 验证图像数量与<image>标记匹配
|
| 364 |
+
image_token_count = sum(len(re.findall(r"<image>", caption)) for caption in captions)
|
| 365 |
+
if image_token_count != len(images):
|
| 366 |
+
raise ValueError(f"图像数量({len(images)})与图像标记数量({image_token_count})不匹配")
|
| 367 |
+
# 替换<image>标记为图像字符串
|
| 368 |
+
hws = [(img.size[1], img.size[0]) for img in images]
|
| 369 |
+
processed_captions = []
|
| 370 |
+
image_idx = 0
|
| 371 |
+
|
| 372 |
+
for caption in captions:
|
| 373 |
+
processed_caption = caption
|
| 374 |
+
while "<image>" in processed_caption:
|
| 375 |
+
processed_caption = processed_caption.replace("<image>", self._image_str(hws[image_idx]), 1)
|
| 376 |
+
image_idx += 1
|
| 377 |
+
processed_captions.append(processed_caption)
|
| 378 |
+
captions = processed_captions
|
| 379 |
+
return captions, images
|
| 380 |
+
|
| 381 |
+
def _build_captions(
|
| 382 |
+
self,
|
| 383 |
+
captions: str | list[str],
|
| 384 |
+
images: list[Image.Image] | None = None,
|
| 385 |
+
num_images_per_caption: int = 1,
|
| 386 |
+
positive_prompt: str | None = None,
|
| 387 |
+
negative_prompt: str | None = None,
|
| 388 |
+
cfg: float = 1.0,
|
| 389 |
+
cfg_img: float = 1.0,
|
| 390 |
+
):
|
| 391 |
+
# 标准化输入
|
| 392 |
+
if not isinstance(captions, list):
|
| 393 |
+
captions = [captions]
|
| 394 |
+
|
| 395 |
+
# 重复captions和images
|
| 396 |
+
captions = [caption for caption in captions for _ in range(num_images_per_caption)]
|
| 397 |
+
if images is not None:
|
| 398 |
+
images = [img for img in images for _ in range(num_images_per_caption)]
|
| 399 |
+
|
| 400 |
+
# 添加positive prompt
|
| 401 |
+
if positive_prompt:
|
| 402 |
+
captions = [f"{caption} {positive_prompt}" for caption in captions]
|
| 403 |
+
|
| 404 |
+
# 设置negative prompt默认值
|
| 405 |
+
negative_prompt = negative_prompt or ""
|
| 406 |
+
|
| 407 |
+
num_samples = len(captions)
|
| 408 |
+
|
| 409 |
+
# 简化CFG逻辑
|
| 410 |
+
if cfg != 1.0:
|
| 411 |
+
if cfg_img != 1.0: # 使用图像和文本CFG
|
| 412 |
+
w, h = images[0].size
|
| 413 |
+
captions = captions + [self._image_str((h, w)) + negative_prompt] * num_samples
|
| 414 |
+
images = images + images
|
| 415 |
+
captions = captions + [negative_prompt] * num_samples
|
| 416 |
+
|
| 417 |
+
return captions, images
|
| 418 |
+
|
| 419 |
+
def _add_prefix_ids(self, hw: tuple[int, int], input_ids: torch.Tensor, attention_mask: torch.Tensor):
|
| 420 |
+
"""添加图像区域前缀ID"""
|
| 421 |
+
prefix_str = DEFAULT_IMAGE_AREA_TOKEN + self.hw2str(hw[0] // self.down_factor, hw[1] // self.down_factor)
|
| 422 |
+
prefix_output = self.tokenizer(prefix_str, truncation=False, add_special_tokens=True, return_tensors="pt")
|
| 423 |
+
|
| 424 |
+
prefix_input_ids = prefix_output.input_ids.to(input_ids.device, dtype=input_ids.dtype)
|
| 425 |
+
prefix_attention_mask = prefix_output.attention_mask.to(attention_mask.device, dtype=attention_mask.dtype)
|
| 426 |
+
|
| 427 |
+
# 移除BOS token并添加BOI token
|
| 428 |
+
if self.tokenizer.bos_token is not None:
|
| 429 |
+
prefix_input_ids = prefix_input_ids[:, 1:]
|
| 430 |
+
prefix_attention_mask = prefix_attention_mask[:, 1:]
|
| 431 |
+
|
| 432 |
+
boi_token = prefix_input_ids.new_tensor([self.model.config.boi]).unsqueeze(0)
|
| 433 |
+
prefix_input_ids = torch.cat([prefix_input_ids, boi_token], dim=1)
|
| 434 |
+
prefix_attention_mask = torch.cat([prefix_attention_mask, prefix_attention_mask.new_ones((1, 1))], dim=1)
|
| 435 |
+
|
| 436 |
+
# 扩展到batch维度并拼接
|
| 437 |
+
bsz = input_ids.shape[0]
|
| 438 |
+
input_ids = torch.cat([input_ids, prefix_input_ids.expand(bsz, -1)], dim=1)
|
| 439 |
+
attention_mask = torch.cat([attention_mask, prefix_attention_mask.expand(bsz, -1)], dim=1)
|
| 440 |
+
|
| 441 |
+
return input_ids, attention_mask
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
def layer_norm(self, input: torch.Tensor, normalized_shape: torch.Size, eps: float = 1e-6) -> torch.Tensor:
|
| 445 |
+
"""简化的layer norm实现,使用PyTorch内置函数"""
|
| 446 |
+
return F.layer_norm(input, normalized_shape, eps=eps)
|
| 447 |
+
|
| 448 |
+
@torch.no_grad()
|
| 449 |
+
def decoding(
|
| 450 |
+
self,
|
| 451 |
+
c: torch.Tensor,
|
| 452 |
+
attention_mask: torch.Tensor,
|
| 453 |
+
past_key_values: Cache,
|
| 454 |
+
max_new_len: int,
|
| 455 |
+
num_images_per_caption: int,
|
| 456 |
+
noise: torch.Tensor = None,
|
| 457 |
+
use_norm: bool = False,
|
| 458 |
+
cfg: float = 1.0,
|
| 459 |
+
cfg_img: float = 1.0,
|
| 460 |
+
cfg_schedule: Literal["linear", "constant"] = "constant",
|
| 461 |
+
timesteps_shift: float = 1.0,
|
| 462 |
+
num_sampling_steps: int = 20,
|
| 463 |
+
progress: bool = True,
|
| 464 |
+
hw: tuple[int, int] = (256, 256),
|
| 465 |
+
step: int = 0,
|
| 466 |
+
sde_solver: bool = False,
|
| 467 |
+
sde_type: str = "sde",
|
| 468 |
+
):
|
| 469 |
+
indices = list(range(max_new_len))
|
| 470 |
+
indices = tqdm(indices, unit="tokens") if progress else indices
|
| 471 |
+
tokens = None
|
| 472 |
+
for step in indices:
|
| 473 |
+
cur_noise = None
|
| 474 |
+
if noise is not None:
|
| 475 |
+
cur_noise = noise[:,step:step+1,:][0]
|
| 476 |
+
|
| 477 |
+
# 简化CFG调度逻辑
|
| 478 |
+
if cfg_schedule == "linear":
|
| 479 |
+
tokens_len = 0 if tokens is None else tokens.shape[1]
|
| 480 |
+
cfg_iter = max(cfg / 2, 1 + (cfg - 1) * tokens_len / max_new_len)
|
| 481 |
+
cfg_img_iter = max(cfg_img / 2, 1 + (cfg_img - 1) * tokens_len / max_new_len)
|
| 482 |
+
else: # constant or other
|
| 483 |
+
cfg_iter = cfg
|
| 484 |
+
cfg_img_iter = cfg_img
|
| 485 |
+
|
| 486 |
+
c = self.model.image_out_projector(c)
|
| 487 |
+
token_sampled = self.model.image_head.sample(
|
| 488 |
+
c=c.squeeze(1),
|
| 489 |
+
noise=cur_noise,
|
| 490 |
+
cfg=cfg_iter,
|
| 491 |
+
cfg_img=cfg_img_iter,
|
| 492 |
+
timesteps_shift=timesteps_shift,
|
| 493 |
+
num_sampling_steps=num_sampling_steps,
|
| 494 |
+
noise_repeat=num_images_per_caption,
|
| 495 |
+
sde_solver=sde_solver,
|
| 496 |
+
sde_type=sde_type,
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
if use_norm:
|
| 500 |
+
token_sampled = self.layer_norm(token_sampled, normalized_shape=token_sampled.size()[1:])
|
| 501 |
+
if tokens is not None:
|
| 502 |
+
tokens = torch.cat([tokens, token_sampled.unsqueeze(1)], dim=1)
|
| 503 |
+
else:
|
| 504 |
+
tokens = token_sampled.unsqueeze(1)
|
| 505 |
+
|
| 506 |
+
cur_inputs_embeds = self.model.image_in_projector(tokens[:, -1:])
|
| 507 |
+
# 简化CFG处理逻辑
|
| 508 |
+
if cfg != 1.0:
|
| 509 |
+
repeat_count = 3 if cfg_img != 1.0 else 2
|
| 510 |
+
cur_inputs_embeds = torch.cat([cur_inputs_embeds] * repeat_count, dim=0)
|
| 511 |
+
|
| 512 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
|
| 513 |
+
outputs = self.model.forward(
|
| 514 |
+
inputs_embeds=cur_inputs_embeds,
|
| 515 |
+
attention_mask=attention_mask,
|
| 516 |
+
past_key_values=past_key_values,
|
| 517 |
+
use_cache=True,
|
| 518 |
+
)
|
| 519 |
+
past_key_values = outputs.past_key_values
|
| 520 |
+
c = outputs.last_hidden_state[:, -1:]
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
return tokens
|
| 524 |
+
|
| 525 |
+
@torch.no_grad()
|
| 526 |
+
def generate_image(
|
| 527 |
+
self,
|
| 528 |
+
captions: str | list[str],
|
| 529 |
+
images: list[Image.Image] | None = None,
|
| 530 |
+
num_images_per_caption: int = 1,
|
| 531 |
+
positive_prompt: str | None = None,
|
| 532 |
+
negative_prompt: str | None = None,
|
| 533 |
+
hw: tuple[int, int] = (256, 256),
|
| 534 |
+
use_norm: bool = False,
|
| 535 |
+
cfg: float = 1.0,
|
| 536 |
+
cfg_img: float = 1.0,
|
| 537 |
+
cfg_schedule: Literal["linear", "constant"] = "constant",
|
| 538 |
+
num_sampling_steps: int = 20,
|
| 539 |
+
timesteps_shift: float = 1.0,
|
| 540 |
+
seed: int = 42,
|
| 541 |
+
progress: bool = True,
|
| 542 |
+
sde_type: str = "sde",
|
| 543 |
+
) -> list[Image.Image]:
|
| 544 |
+
# 0. set seed
|
| 545 |
+
|
| 546 |
+
# 1. check input
|
| 547 |
+
captions, images = self._check_input(captions, images)
|
| 548 |
+
|
| 549 |
+
# 2. build captions
|
| 550 |
+
captions, images = self._build_captions(
|
| 551 |
+
captions, images, num_images_per_caption, positive_prompt, negative_prompt, cfg, cfg_img
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
# 3. encode images
|
| 555 |
+
latents = None
|
| 556 |
+
if images is not None:
|
| 557 |
+
pixel_values = torch.stack([self.pil2tensor(img) for img in images]).to(self.device)
|
| 558 |
+
posterior = self.vae.encode(pixel_values.to(self.vae.dtype)).latent_dist
|
| 559 |
+
latents = (posterior.sample() - self.shift_factor) * self.scaling_factor
|
| 560 |
+
|
| 561 |
+
# 添加BOS token
|
| 562 |
+
if self.tokenizer.bos_token is not None:
|
| 563 |
+
captions = [self.tokenizer.bos_token + caption for caption in captions]
|
| 564 |
+
|
| 565 |
+
if seed is not None:
|
| 566 |
+
self.set_seed(seed)
|
| 567 |
+
|
| 568 |
+
# 4. tokenize caption & add prefix ids
|
| 569 |
+
output = self.tokenizer(
|
| 570 |
+
captions,
|
| 571 |
+
padding="longest",
|
| 572 |
+
truncation=False,
|
| 573 |
+
add_special_tokens=True,
|
| 574 |
+
return_tensors="pt",
|
| 575 |
+
padding_side="left"
|
| 576 |
+
)
|
| 577 |
+
input_ids = output.input_ids.to(self.device)
|
| 578 |
+
attention_mask = output.attention_mask.to(self.device)
|
| 579 |
+
input_ids, attention_mask = self._add_prefix_ids(hw, input_ids, attention_mask)
|
| 580 |
+
|
| 581 |
+
# 5. LLM prefill
|
| 582 |
+
max_new_len = (hw[0] // self.down_factor) * (hw[1] // self.down_factor)
|
| 583 |
+
max_cache_len = input_ids.shape[1] + max_new_len
|
| 584 |
+
# past_key_values = StaticCache(
|
| 585 |
+
# config=self.model.config,
|
| 586 |
+
# max_batch_size=input_ids.shape[0],
|
| 587 |
+
# max_cache_len=max_cache_len,
|
| 588 |
+
# device=self.device,
|
| 589 |
+
# dtype=self.dtype,
|
| 590 |
+
# )
|
| 591 |
+
inputs_embeds = self.model.prepare_inputs_embeds(input_ids, latents)
|
| 592 |
+
|
| 593 |
+
outputs = self.model.forward(
|
| 594 |
+
inputs_embeds=inputs_embeds,
|
| 595 |
+
attention_mask=attention_mask,
|
| 596 |
+
past_key_values=None,
|
| 597 |
+
use_cache=True,
|
| 598 |
+
)
|
| 599 |
+
past_key_values = outputs.past_key_values
|
| 600 |
+
c = outputs.last_hidden_state[:, -1:]
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
# 6. decoding
|
| 604 |
+
tokens = self.decoding(
|
| 605 |
+
c=c,
|
| 606 |
+
attention_mask=attention_mask,
|
| 607 |
+
past_key_values=past_key_values,
|
| 608 |
+
max_new_len=max_new_len,
|
| 609 |
+
num_images_per_caption=num_images_per_caption,
|
| 610 |
+
use_norm=use_norm,
|
| 611 |
+
cfg=cfg,
|
| 612 |
+
cfg_img=cfg_img,
|
| 613 |
+
cfg_schedule=cfg_schedule,
|
| 614 |
+
timesteps_shift=timesteps_shift,
|
| 615 |
+
num_sampling_steps=num_sampling_steps,
|
| 616 |
+
progress=progress,
|
| 617 |
+
hw=hw,
|
| 618 |
+
sde_type=sde_type,
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
# 7. unpatchify
|
| 622 |
+
latents = self.model.unpatchify(tokens, h=hw[0] // self.down_factor, w=hw[1] // self.down_factor)
|
| 623 |
+
latents = (latents / self.scaling_factor) + self.shift_factor
|
| 624 |
+
|
| 625 |
+
# 8. decode latents
|
| 626 |
+
sampled_images = self.vae.decode(latents.to(self.vae.dtype)).sample
|
| 627 |
+
sampled_images = sampled_images.detach().cpu().to(torch.float32)
|
| 628 |
+
pil_images = [self.to_pil(img) for img in sampled_images]
|
| 629 |
+
|
| 630 |
+
return pil_images
|
| 631 |
+
|
models/nextstep_model.py
ADDED
|
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
|
| 5 |
+
from torch.utils.checkpoint import checkpoint
|
| 6 |
+
|
| 7 |
+
from transformers import Qwen2Model, Qwen2Config
|
| 8 |
+
|
| 9 |
+
def modulate(x, shift, scale=None):
|
| 10 |
+
"""Adaptive layer normalization modulation"""
|
| 11 |
+
if shift is None:
|
| 12 |
+
return x * (1 + scale)
|
| 13 |
+
return x * (1 + scale) + shift
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def expand_t(t, x):
|
| 17 |
+
"""Function to reshape time t to broadcastable dimension of x
|
| 18 |
+
Args:
|
| 19 |
+
t: [bsz,], time vector
|
| 20 |
+
x: [bsz,...], data point
|
| 21 |
+
"""
|
| 22 |
+
return t.view(-1, *([1] * (x.ndim - 1)))
|
| 23 |
+
|
| 24 |
+
class ResBlock(nn.Module):
|
| 25 |
+
def __init__(self, channels, mlp_ratio=1.0):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.channels = channels
|
| 28 |
+
self.intermediate_size = int(channels * mlp_ratio)
|
| 29 |
+
|
| 30 |
+
self.in_ln = nn.LayerNorm(self.channels, eps=1e-6)
|
| 31 |
+
self.mlp = nn.Sequential(
|
| 32 |
+
nn.Linear(self.channels, self.intermediate_size),
|
| 33 |
+
nn.SiLU(),
|
| 34 |
+
nn.Linear(self.intermediate_size, self.channels),
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(channels, 3 * channels, bias=True))
|
| 38 |
+
|
| 39 |
+
def forward(self, x, y):
|
| 40 |
+
shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(y).chunk(3, dim=-1)
|
| 41 |
+
h = modulate(self.in_ln(x), shift_mlp, scale_mlp)
|
| 42 |
+
h = self.mlp(h)
|
| 43 |
+
return x + gate_mlp * h
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class FinalLayer(nn.Module):
|
| 47 |
+
def __init__(self, model_channels, out_channels):
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.norm_final = nn.LayerNorm(model_channels, elementwise_affine=False, eps=1e-6)
|
| 50 |
+
self.linear = nn.Linear(model_channels, out_channels, bias=True)
|
| 51 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(model_channels, 2 * model_channels, bias=True))
|
| 52 |
+
|
| 53 |
+
def forward(self, x, c):
|
| 54 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
|
| 55 |
+
x = modulate(self.norm_final(x), shift, scale)
|
| 56 |
+
x = self.linear(x)
|
| 57 |
+
return x
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class TimestepEmbedder(nn.Module):
|
| 61 |
+
"""
|
| 62 |
+
Embeds scalar timesteps into vector representations.
|
| 63 |
+
|
| 64 |
+
Note: diffusers.models.embeddings.TimestepEmbedding provides similar functionality
|
| 65 |
+
but with a different interface (requires in_channels, time_embed_dim).
|
| 66 |
+
This implementation follows the Glide-style timestep embedding.
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.mlp = nn.Sequential(
|
| 72 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 73 |
+
nn.SiLU(),
|
| 74 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 75 |
+
)
|
| 76 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 77 |
+
|
| 78 |
+
@staticmethod
|
| 79 |
+
def timestep_embedding(t: torch.Tensor, dim: int, max_period: float = 10000.0):
|
| 80 |
+
"""
|
| 81 |
+
Create sinusoidal timestep embeddings.
|
| 82 |
+
:param t: a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
| 83 |
+
:param dim: the dimension of the output.
|
| 84 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 85 |
+
:return: an (N, D) Tensor of positional embeddings.
|
| 86 |
+
"""
|
| 87 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 88 |
+
half = dim // 2
|
| 89 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
| 90 |
+
device=t.device
|
| 91 |
+
)
|
| 92 |
+
args = t[:, None].float() * freqs[None]
|
| 93 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 94 |
+
if dim % 2:
|
| 95 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 96 |
+
return embedding
|
| 97 |
+
|
| 98 |
+
def forward(self, t):
|
| 99 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 100 |
+
t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
|
| 101 |
+
return t_emb
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class SimpleMLPAdaLN(nn.Module):
|
| 105 |
+
def __init__(self, input_dim, cond_dim, dim=1536, layers=12, mlp_ratio=1.0):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.input_dim = input_dim
|
| 108 |
+
self.cond_dim = cond_dim
|
| 109 |
+
self.dim = dim
|
| 110 |
+
self.layers = layers
|
| 111 |
+
self.mlp_ratio = mlp_ratio
|
| 112 |
+
|
| 113 |
+
self.time_embed = TimestepEmbedder(dim)
|
| 114 |
+
self.cond_embed = nn.Linear(cond_dim, dim)
|
| 115 |
+
self.input_proj = nn.Linear(input_dim, dim)
|
| 116 |
+
|
| 117 |
+
res_blocks = []
|
| 118 |
+
for _ in range(layers):
|
| 119 |
+
res_blocks.append(ResBlock(dim, mlp_ratio))
|
| 120 |
+
self.res_blocks = nn.ModuleList(res_blocks)
|
| 121 |
+
|
| 122 |
+
self.final_layer = FinalLayer(dim, input_dim)
|
| 123 |
+
|
| 124 |
+
self.grad_checkpointing = False
|
| 125 |
+
|
| 126 |
+
self.initialize_weights()
|
| 127 |
+
|
| 128 |
+
def initialize_weights(self):
|
| 129 |
+
def _basic_init(module):
|
| 130 |
+
if isinstance(module, nn.Linear):
|
| 131 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 132 |
+
if module.bias is not None:
|
| 133 |
+
nn.init.constant_(module.bias, 0)
|
| 134 |
+
|
| 135 |
+
self.apply(_basic_init)
|
| 136 |
+
|
| 137 |
+
# Initialize timestep embedding MLP
|
| 138 |
+
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
|
| 139 |
+
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
|
| 140 |
+
|
| 141 |
+
# Zero-out adaLN modulation layers
|
| 142 |
+
for block in self.res_blocks:
|
| 143 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
| 144 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
| 145 |
+
|
| 146 |
+
# Zero-out output layers
|
| 147 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
| 148 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
| 149 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
| 150 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
| 151 |
+
|
| 152 |
+
def forward(self, x, t, c):
|
| 153 |
+
"""
|
| 154 |
+
x.shape = (bsz, input_dim)
|
| 155 |
+
t.shape = (bsz,)
|
| 156 |
+
c.shape = (bsz, cond_dim)
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
x = self.input_proj(x)
|
| 160 |
+
t = self.time_embed(t)
|
| 161 |
+
c = self.cond_embed(c)
|
| 162 |
+
|
| 163 |
+
y = t + c
|
| 164 |
+
|
| 165 |
+
for block in self.res_blocks:
|
| 166 |
+
if self.grad_checkpointing and self.training:
|
| 167 |
+
x = checkpoint(block, x, y, use_reentrant=False)
|
| 168 |
+
else:
|
| 169 |
+
x = block(x, y)
|
| 170 |
+
|
| 171 |
+
return self.final_layer(x, y)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
class FlowMatchingHead(nn.Module):
|
| 175 |
+
|
| 176 |
+
def __init__(self, input_dim, cond_dim, dim=1536, layers=12, mlp_ratio=1.0):
|
| 177 |
+
super(FlowMatchingHead, self).__init__()
|
| 178 |
+
self.input_dim = input_dim
|
| 179 |
+
self.net = SimpleMLPAdaLN(input_dim=input_dim, cond_dim=cond_dim, dim=dim, layers=layers, mlp_ratio=mlp_ratio)
|
| 180 |
+
|
| 181 |
+
@property
|
| 182 |
+
def dtype(self):
|
| 183 |
+
return self.net.input_proj.weight.dtype
|
| 184 |
+
|
| 185 |
+
@property
|
| 186 |
+
def device(self):
|
| 187 |
+
return self.net.input_proj.weight.device
|
| 188 |
+
|
| 189 |
+
def get_score_from_velocity(self, velocity, x, t):
|
| 190 |
+
"""Wrapper function: transfrom velocity prediction model to score
|
| 191 |
+
Args:
|
| 192 |
+
velocity: [bsz, ...] shaped tensor; velocity model output
|
| 193 |
+
x: [bsz, ...] shaped tensor; x_t data point
|
| 194 |
+
t: [bsz,] time tensor
|
| 195 |
+
"""
|
| 196 |
+
t = expand_t(t, x)
|
| 197 |
+
alpha_t, d_alpha_t = t, 1
|
| 198 |
+
sigma_t, d_sigma_t = 1 - t, -1
|
| 199 |
+
mean = x
|
| 200 |
+
reverse_alpha_ratio = alpha_t / d_alpha_t
|
| 201 |
+
var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
|
| 202 |
+
score = (reverse_alpha_ratio * velocity - mean) / var
|
| 203 |
+
return score
|
| 204 |
+
|
| 205 |
+
def get_velocity_from_cfg(self, velocity, cfg, cfg_img, cfg_mul, normalize=False):
|
| 206 |
+
if cfg_mul == 2:
|
| 207 |
+
cond_v, uncond_v = torch.chunk(velocity, 2, dim=0)
|
| 208 |
+
velocity = uncond_v + cfg * (cond_v - uncond_v)
|
| 209 |
+
if normalize and cfg > 1.0:
|
| 210 |
+
norm_cond = torch.norm(cond_v, dim=-1, keepdim=True)
|
| 211 |
+
norm_velocity = torch.norm(velocity, dim=-1, keepdim=True)
|
| 212 |
+
scale_factor = norm_cond / (norm_velocity + 1e-6)
|
| 213 |
+
scale_factor = torch.clamp(scale_factor, min=0, max=1)
|
| 214 |
+
velocity = velocity * scale_factor
|
| 215 |
+
elif cfg_mul == 3:
|
| 216 |
+
cond_v, uncond_v1, uncond_v2 = torch.chunk(velocity, 3, dim=0)
|
| 217 |
+
velocity = uncond_v2 + cfg_img * (uncond_v1 - uncond_v2) + cfg * (cond_v - uncond_v1)
|
| 218 |
+
if normalize and cfg > 1.0 and cfg_img > 1.0:
|
| 219 |
+
norm_cond = torch.norm(cond_v, dim=-1, keepdim=True)
|
| 220 |
+
norm_velocity = torch.norm(velocity, dim=-1, keepdim=True)
|
| 221 |
+
scale_factor = norm_cond / (norm_velocity + 1e-6)
|
| 222 |
+
scale_factor = torch.clamp(scale_factor, min=0, max=1)
|
| 223 |
+
velocity = velocity * scale_factor
|
| 224 |
+
return velocity
|
| 225 |
+
|
| 226 |
+
def _compute_cfg_mult(self, cfg: float, cfg_img: float) -> int:
|
| 227 |
+
"""计算 CFG 的倍数"""
|
| 228 |
+
cfg_mul = 1
|
| 229 |
+
if cfg > 1.0:
|
| 230 |
+
cfg_mul += 1
|
| 231 |
+
if cfg_img > 1.0:
|
| 232 |
+
cfg_mul += 1
|
| 233 |
+
return cfg_mul
|
| 234 |
+
|
| 235 |
+
def _compute_velocity_and_basics(self, x, c, ti, cfg, cfg_img, cfg_mul):
|
| 236 |
+
"""计算 velocity 和基础值(cur_t, next_t, x0, x1)"""
|
| 237 |
+
combined = torch.cat([x] * cfg_mul, dim=0)
|
| 238 |
+
velocity = self.net(combined.to(c.dtype), ti.expand(c.shape[0]).to(c), c)
|
| 239 |
+
velocity = velocity.to(torch.float32)
|
| 240 |
+
velocity = self.get_velocity_from_cfg(velocity, cfg, cfg_img, cfg_mul)
|
| 241 |
+
|
| 242 |
+
cur_t = ti.view(-1, *([1] * (len(x.shape) - 1))).to(x.device)
|
| 243 |
+
x0 = x - velocity * cur_t # noise
|
| 244 |
+
x1 = x + velocity * (1 - cur_t) # ode image
|
| 245 |
+
|
| 246 |
+
return velocity, cur_t, x0, x1
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
@torch.no_grad()
|
| 250 |
+
def sample(
|
| 251 |
+
self,
|
| 252 |
+
c: torch.Tensor,
|
| 253 |
+
noise: torch.Tensor = None,
|
| 254 |
+
cfg: float = 1.0,
|
| 255 |
+
cfg_img: float = 1.0,
|
| 256 |
+
timesteps_shift: float = 1.0,
|
| 257 |
+
num_sampling_steps: int = 20,
|
| 258 |
+
last_step_size: float = 0.0,
|
| 259 |
+
noise_repeat: int = 1,
|
| 260 |
+
sde_solver: bool = False,
|
| 261 |
+
sde_type: str = "sde",
|
| 262 |
+
noise_level: float = 0.8,
|
| 263 |
+
):
|
| 264 |
+
# """c.shape = (bsz, cond_dim)"""
|
| 265 |
+
cfg_mul = self._compute_cfg_mult(cfg, cfg_img)
|
| 266 |
+
|
| 267 |
+
if noise is None:
|
| 268 |
+
noise = torch.randn((c.shape[0] // cfg_mul, self.input_dim), device=c.device, dtype=c.dtype)
|
| 269 |
+
|
| 270 |
+
x = noise
|
| 271 |
+
xs = []
|
| 272 |
+
|
| 273 |
+
t0, t1 = 0, 1
|
| 274 |
+
timesteps = torch.linspace(t0, t1, num_sampling_steps + 1, device=c.device)[:-1]
|
| 275 |
+
timesteps = timesteps / (timesteps_shift - (timesteps_shift - 1) * timesteps)
|
| 276 |
+
timesteps = torch.cat([timesteps, torch.ones(1, device=c.device)])
|
| 277 |
+
# timesteps = torch.tensor([1.0000, 0.9601, 0.9133, 0.8577, 0.7904, 0.7073, 0.6022, 0.4649, 0.2780, 0.0089, 0.0000], device=c.device)
|
| 278 |
+
# timesteps = 1 - timesteps
|
| 279 |
+
sigma_max = timesteps[-2]
|
| 280 |
+
for ti, tj in zip(timesteps[:-1], timesteps[1:]):
|
| 281 |
+
velocity, cur_t, x0, x1 = self._compute_velocity_and_basics(x, c, ti, cfg, cfg_img, cfg_mul)
|
| 282 |
+
next_t = tj.view(-1, *([1] * (len(x.shape) - 1))).to(x.device)
|
| 283 |
+
|
| 284 |
+
if sde_type == "cps":
|
| 285 |
+
# Flow-CPS
|
| 286 |
+
std_dev_t = (1 - next_t) * math.sin(noise_level * math.pi / 2) # sigma_t in paper
|
| 287 |
+
sde_noise = torch.randn((c.shape[0] // cfg_mul, self.input_dim), device=c.device, dtype=c.dtype)
|
| 288 |
+
|
| 289 |
+
x = x0 * torch.sqrt((1 - next_t)**2 - std_dev_t**2) + x1 * next_t + std_dev_t * sde_noise
|
| 290 |
+
elif sde_type == "sde":
|
| 291 |
+
sigma = 1 - cur_t
|
| 292 |
+
dt = tj - ti
|
| 293 |
+
std_dev_t = torch.sqrt(sigma / (1 - torch.where(sigma == 1, sigma_max, sigma)))*noise_level
|
| 294 |
+
|
| 295 |
+
variance_noise = torch.randn((c.shape[0] // cfg_mul, self.input_dim), device=c.device, dtype=c.dtype)
|
| 296 |
+
|
| 297 |
+
x = x0 * (1 - next_t) + x1 * next_t - std_dev_t ** 2 * dt / (2 * sigma) * x0
|
| 298 |
+
x = x + std_dev_t * torch.sqrt(dt) * variance_noise
|
| 299 |
+
else:
|
| 300 |
+
# ODE
|
| 301 |
+
x = x0 * (1 - next_t) + x1 * next_t
|
| 302 |
+
|
| 303 |
+
xs.append(x)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
if len(xs) != num_sampling_steps:
|
| 307 |
+
raise ValueError(f"Samples ({len(xs)}) does not match the number of steps ({num_sampling_steps})")
|
| 308 |
+
|
| 309 |
+
return xs[-1].to(c.dtype)
|
| 310 |
+
|
| 311 |
+
class NextStepConfig(Qwen2Config):
|
| 312 |
+
model_type = "nextstep"
|
| 313 |
+
|
| 314 |
+
def __init__(
|
| 315 |
+
self,
|
| 316 |
+
vae_name_or_path: str | None = None,
|
| 317 |
+
latent_size: int = 32,
|
| 318 |
+
latent_patch_size: int = 2,
|
| 319 |
+
latent_channels: int = 16,
|
| 320 |
+
boi: int | None = None,
|
| 321 |
+
eoi: int | None = None,
|
| 322 |
+
image_placeholder_id: int | None = None,
|
| 323 |
+
pad_token_id_added: int | None = None,
|
| 324 |
+
lm_loss_weight: float = 0.01,
|
| 325 |
+
im_loss_weight: float = 1.0,
|
| 326 |
+
fm_head_dim: int = 1536,
|
| 327 |
+
fm_head_layers: int = 12,
|
| 328 |
+
fm_head_batch_mul: int = 4,
|
| 329 |
+
o_attention_bias: bool | None = None,
|
| 330 |
+
attn_implementation: str | None = None, # Add flash attention support
|
| 331 |
+
**kwargs,
|
| 332 |
+
):
|
| 333 |
+
super().__init__(**kwargs)
|
| 334 |
+
|
| 335 |
+
# 图像相关参数
|
| 336 |
+
self.vae_name_or_path = vae_name_or_path
|
| 337 |
+
self.latent_size = latent_size
|
| 338 |
+
self.latent_patch_size = latent_patch_size
|
| 339 |
+
self.latent_channels = latent_channels
|
| 340 |
+
|
| 341 |
+
# 特殊token ID
|
| 342 |
+
self.boi = boi
|
| 343 |
+
self.eoi = eoi
|
| 344 |
+
self.image_placeholder_id = image_placeholder_id
|
| 345 |
+
self.pad_token_id_added = pad_token_id_added
|
| 346 |
+
|
| 347 |
+
# 损失权重
|
| 348 |
+
self.lm_loss_weight = lm_loss_weight
|
| 349 |
+
self.im_loss_weight = im_loss_weight
|
| 350 |
+
|
| 351 |
+
# Flow Matching Head参数
|
| 352 |
+
self.fm_head_dim = fm_head_dim
|
| 353 |
+
self.fm_head_layers = fm_head_layers
|
| 354 |
+
self.fm_head_batch_mul = fm_head_batch_mul
|
| 355 |
+
|
| 356 |
+
# Attention bias
|
| 357 |
+
self.o_attention_bias = o_attention_bias
|
| 358 |
+
|
| 359 |
+
# Flash attention support
|
| 360 |
+
self._attn_implementation = attn_implementation
|
| 361 |
+
|
| 362 |
+
class NextStep(Qwen2Model):
|
| 363 |
+
config_class = NextStepConfig
|
| 364 |
+
|
| 365 |
+
def __init__(self, config: NextStepConfig, enable_gradient_checkpointing: bool = False):
|
| 366 |
+
super().__init__(config)
|
| 367 |
+
|
| 368 |
+
# 初始化投影器和头部
|
| 369 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 370 |
+
token_dim = config.latent_channels * config.latent_patch_size**2
|
| 371 |
+
|
| 372 |
+
# 图像投影器
|
| 373 |
+
self.image_in_projector = self._create_linear(token_dim, config.hidden_size, config.initializer_range)
|
| 374 |
+
self.image_out_projector = self._create_linear(config.hidden_size, config.hidden_size, config.initializer_range)
|
| 375 |
+
|
| 376 |
+
# Flow Matching Head
|
| 377 |
+
self.image_head = FlowMatchingHead(
|
| 378 |
+
input_dim=token_dim,
|
| 379 |
+
cond_dim=config.hidden_size,
|
| 380 |
+
dim=config.fm_head_dim,
|
| 381 |
+
layers=config.fm_head_layers,
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
self.gradient_checkpointing = False
|
| 385 |
+
# 缓存第一个可训练参数,用于建立梯度连接(避免每次遍历)
|
| 386 |
+
self._first_trainable_param = None
|
| 387 |
+
|
| 388 |
+
if enable_gradient_checkpointing:
|
| 389 |
+
try:
|
| 390 |
+
self.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
|
| 391 |
+
print("Enabled gradient checkpointing (use_reentrant=False) at init for NextStep model")
|
| 392 |
+
except Exception as e:
|
| 393 |
+
print(f"Enable gradient checkpointing failed at init: {e}")
|
| 394 |
+
|
| 395 |
+
def gradient_checkpointing_enable(self, **kwargs):
|
| 396 |
+
super().gradient_checkpointing_enable(**kwargs)
|
| 397 |
+
self.image_head.net.grad_checkpointing = True
|
| 398 |
+
self.gradient_checkpointing = True
|
| 399 |
+
|
| 400 |
+
def _get_first_trainable_param(self):
|
| 401 |
+
"""获取第一个可训练参数的引用(延迟初始化,避免在 __init__ 时 LoRA 还未添加)"""
|
| 402 |
+
if self._first_trainable_param is None:
|
| 403 |
+
for param in self.parameters():
|
| 404 |
+
if param.requires_grad:
|
| 405 |
+
self._first_trainable_param = param
|
| 406 |
+
break
|
| 407 |
+
return self._first_trainable_param
|
| 408 |
+
|
| 409 |
+
def _ensure_gradient_connection(self, hidden_states):
|
| 410 |
+
"""确保 hidden_states 有梯度连接(对于 LoRA + gradient checkpointing 很重要)"""
|
| 411 |
+
if self.training and not hidden_states.requires_grad:
|
| 412 |
+
# 通过一个可训练参数的恒等操作来建立梯度连接
|
| 413 |
+
# 这样即使基础层被冻结,梯度也能通过 LoRA 层传播
|
| 414 |
+
# 使用缓存的可训练参数,避免每次遍历
|
| 415 |
+
param = self._get_first_trainable_param()
|
| 416 |
+
if param is not None:
|
| 417 |
+
# 创建一个恒等操作,但通过可训练参数建立连接
|
| 418 |
+
# 这样 hidden_states 就能连接到计算图
|
| 419 |
+
# 使用 flatten()[0] 而不是 sum() 以减少计算开销
|
| 420 |
+
hidden_states = hidden_states + 0.0 * param.flatten()[0]
|
| 421 |
+
else:
|
| 422 |
+
# 如果没有可训练参数,直接设置 requires_grad
|
| 423 |
+
hidden_states = hidden_states.detach().requires_grad_(True)
|
| 424 |
+
return hidden_states
|
| 425 |
+
|
| 426 |
+
def _create_linear(self, in_features: int, out_features: int, std: float) -> nn.Linear:
|
| 427 |
+
"""创建并初始化线性层"""
|
| 428 |
+
linear = nn.Linear(in_features, out_features)
|
| 429 |
+
linear.weight.data.normal_(mean=0.0, std=std)
|
| 430 |
+
linear.bias.data.zero_()
|
| 431 |
+
return linear
|
| 432 |
+
|
| 433 |
+
def patchify(self, img: torch.Tensor):
|
| 434 |
+
"""
|
| 435 |
+
img: (bsz, C, H, W)
|
| 436 |
+
x: (bsz, H * W / patch_size**2, patch_size**2 * C)
|
| 437 |
+
"""
|
| 438 |
+
bsz, c, h, w = img.shape
|
| 439 |
+
p = self.config.latent_patch_size
|
| 440 |
+
h_, w_ = h // p, w // p
|
| 441 |
+
|
| 442 |
+
img = img.reshape(bsz, c, h_, p, w_, p)
|
| 443 |
+
img = torch.einsum("nchpwq->nhwcpq", img)
|
| 444 |
+
x = img.reshape(bsz, h_ * w_, c * p**2)
|
| 445 |
+
return x
|
| 446 |
+
|
| 447 |
+
def unpatchify(self, x: torch.Tensor, h: int = None, w: int = None):
|
| 448 |
+
"""
|
| 449 |
+
x: (bsz, H * W / patch_size**2, patch_size**2 * C)
|
| 450 |
+
img: (bsz, C, H, W)
|
| 451 |
+
"""
|
| 452 |
+
bsz = x.shape[0]
|
| 453 |
+
p = self.config.latent_patch_size
|
| 454 |
+
c = self.config.latent_channels
|
| 455 |
+
if h is None and w is None:
|
| 456 |
+
h_ = w_ = int(x.shape[1] ** 0.5)
|
| 457 |
+
else:
|
| 458 |
+
h_, w_ = h, w
|
| 459 |
+
assert h_ * w_ == x.shape[1], f"Invalid sequence length {x.shape[1]}."
|
| 460 |
+
|
| 461 |
+
x = x.reshape(bsz, h_, w_, c, p, p)
|
| 462 |
+
x = torch.einsum("nhwcpq->nchpwq", x)
|
| 463 |
+
img = x.reshape(bsz, c, h_ * p, w_ * p)
|
| 464 |
+
return img
|
| 465 |
+
|
| 466 |
+
def prepare_inputs_embeds(self, input_ids: torch.LongTensor | None = None, latents: torch.FloatTensor | None = None):
|
| 467 |
+
"""准备输入嵌入,支持文本和图像token混合"""
|
| 468 |
+
if latents is None:
|
| 469 |
+
return self.embed_tokens(input_ids)
|
| 470 |
+
|
| 471 |
+
bs, seq_length = input_ids.shape
|
| 472 |
+
inputs_embeds = torch.zeros(
|
| 473 |
+
(bs, seq_length, self.config.hidden_size),
|
| 474 |
+
device=self.embed_tokens.weight.device,
|
| 475 |
+
dtype=self.embed_tokens.weight.dtype,
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
im_indices = input_ids == self.config.image_placeholder_id
|
| 479 |
+
lm_indices = ~im_indices
|
| 480 |
+
|
| 481 |
+
# 处理图像latents
|
| 482 |
+
try:
|
| 483 |
+
if isinstance(latents, list):
|
| 484 |
+
tokens = torch.cat([self.patchify(latent) for latent in latents], dim=1)
|
| 485 |
+
else:
|
| 486 |
+
tokens = self.patchify(latents)
|
| 487 |
+
except Exception as e:
|
| 488 |
+
tokens = latents
|
| 489 |
+
|
| 490 |
+
image_embeds = self.image_in_projector(tokens).view(-1, self.config.hidden_size)
|
| 491 |
+
token_embeds = self.embed_tokens(input_ids[lm_indices])
|
| 492 |
+
|
| 493 |
+
inputs_embeds[im_indices] = image_embeds.to(inputs_embeds.dtype)
|
| 494 |
+
inputs_embeds[lm_indices] = token_embeds
|
| 495 |
+
|
| 496 |
+
return inputs_embeds
|
| 497 |
+
|
| 498 |
+
def forward(self, input_ids=None, attention_mask=None, position_ids=None,
|
| 499 |
+
inputs_embeds=None, past_key_values=None, use_cache=None,
|
| 500 |
+
output_attentions=None, output_hidden_states=None,
|
| 501 |
+
return_dict=None, forward_head=False,normalize=False, **kwargs):
|
| 502 |
+
"""重写 forward 方法,添加梯度连接逻辑"""
|
| 503 |
+
# 如果提供了 inputs_embeds,确保它有梯度连接
|
| 504 |
+
if forward_head:
|
| 505 |
+
x, t, c, cfg, cfg_img, cfg_mul = kwargs["x"], kwargs["t"], kwargs["c"],kwargs["cfg"], kwargs["cfg_img"], kwargs["cfg_mul"]
|
| 506 |
+
return self.forward_head(x, t, c, cfg, cfg_img, cfg_mul, normalize=normalize)
|
| 507 |
+
|
| 508 |
+
if inputs_embeds is not None:
|
| 509 |
+
inputs_embeds = self._ensure_gradient_connection(inputs_embeds)
|
| 510 |
+
|
| 511 |
+
# 调用父类的 forward 方法
|
| 512 |
+
return super().forward(
|
| 513 |
+
input_ids=input_ids,
|
| 514 |
+
attention_mask=attention_mask,
|
| 515 |
+
position_ids=position_ids,
|
| 516 |
+
inputs_embeds=inputs_embeds,
|
| 517 |
+
past_key_values=past_key_values,
|
| 518 |
+
use_cache=use_cache,
|
| 519 |
+
output_attentions=output_attentions,
|
| 520 |
+
output_hidden_states=output_hidden_states,
|
| 521 |
+
return_dict=return_dict,
|
| 522 |
+
**kwargs
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
def forward_head(self, x, t, c, cfg, cfg_img, cfg_mul, normalize=False, **kwargs):
|
| 526 |
+
# Align tensors with the actual module dtypes so Deepspeed casting does not cause matmul mismatches.
|
| 527 |
+
projector_dtype = next(self.image_out_projector.parameters()).dtype
|
| 528 |
+
c = c.to(projector_dtype)
|
| 529 |
+
x = x.to(projector_dtype)
|
| 530 |
+
t = t.to(projector_dtype)
|
| 531 |
+
|
| 532 |
+
c = self.image_out_projector(c)
|
| 533 |
+
c = c.squeeze(1)
|
| 534 |
+
|
| 535 |
+
velocity = self.image_head.net(x, t, c)
|
| 536 |
+
velocity = velocity.to(torch.float32)
|
| 537 |
+
velocity = self.image_head.get_velocity_from_cfg(velocity, cfg, cfg_img, cfg_mul, normalize)
|
| 538 |
+
return velocity
|
pytorch-model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a90dfc0a1ff8eb1228c285deb309c2b3dbd764c297ac2eb5f0aefff52c69949f
|
| 3 |
+
size 9962132680
|
pytorch-model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7757fd43fa03c2567b43730fa8edfb74c304ceabce1bd3ae6b6a6542dddc4704
|
| 3 |
+
size 9909693448
|
pytorch-model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8a6e6396efe3af55320c3223cd341abc94f0e4862ff54729533b69e404ef099
|
| 3 |
+
size 8478742432
|
pytorch-model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:03bfc2ef4d9d760fb3ae9edf48d60d66c2e498286825dbc09658d9aa8cce1ceb
|
| 3 |
+
size 1557135464
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers==0.34.0
|
| 2 |
+
einops==0.8.1
|
| 3 |
+
gradio==5.42.0
|
| 4 |
+
loguru==0.7.3
|
| 5 |
+
numpy==1.26.4
|
| 6 |
+
omegaconf==2.3.0
|
| 7 |
+
Pillow==11.0.0
|
| 8 |
+
Requests==2.32.4
|
| 9 |
+
safetensors==0.5.3
|
| 10 |
+
tabulate==0.9.0
|
| 11 |
+
torch==2.5.1
|
| 12 |
+
torchvision==0.20.1
|
| 13 |
+
tqdm==4.67.1
|
| 14 |
+
transformers==4.55.0
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|image_area|>",
|
| 4 |
+
"<|begin_of_image|>",
|
| 5 |
+
"<|end_of_image|>",
|
| 6 |
+
"<|image_placeholder|>",
|
| 7 |
+
"<|begin_of_prompt_refinement|>",
|
| 8 |
+
"<|end_of_prompt_refinement|>",
|
| 9 |
+
"<|begin_of_thinking|>",
|
| 10 |
+
"<|end_of_thinking|>",
|
| 11 |
+
"<|beginoftext|>"
|
| 12 |
+
],
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"content": "<|endoftext|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
},
|
| 20 |
+
"pad_token": {
|
| 21 |
+
"content": "[PAD]",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
}
|
| 27 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:310b48c809fba04c32e7f7cdac4d0fb1c00140d8914e0b0163307f64e5330a92
|
| 3 |
+
size 11423853
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "[PAD]",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": true
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "<|image_area|>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": true
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<|begin_of_image|>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": true
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "<|end_of_image|>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": true
|
| 212 |
+
},
|
| 213 |
+
"151669": {
|
| 214 |
+
"content": "<|image_placeholder|>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": true
|
| 220 |
+
},
|
| 221 |
+
"151670": {
|
| 222 |
+
"content": "<|begin_of_prompt_refinement|>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": false,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": true
|
| 228 |
+
},
|
| 229 |
+
"151671": {
|
| 230 |
+
"content": "<|end_of_prompt_refinement|>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": false,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": true
|
| 236 |
+
},
|
| 237 |
+
"151672": {
|
| 238 |
+
"content": "<|begin_of_thinking|>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": false,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": true
|
| 244 |
+
},
|
| 245 |
+
"151673": {
|
| 246 |
+
"content": "<|end_of_thinking|>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": false,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": true
|
| 252 |
+
},
|
| 253 |
+
"151674": {
|
| 254 |
+
"content": "<|beginoftext|>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": false,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": true
|
| 260 |
+
}
|
| 261 |
+
},
|
| 262 |
+
"additional_special_tokens": [
|
| 263 |
+
"<|image_area|>",
|
| 264 |
+
"<|begin_of_image|>",
|
| 265 |
+
"<|end_of_image|>",
|
| 266 |
+
"<|image_placeholder|>",
|
| 267 |
+
"<|begin_of_prompt_refinement|>",
|
| 268 |
+
"<|end_of_prompt_refinement|>",
|
| 269 |
+
"<|begin_of_thinking|>",
|
| 270 |
+
"<|end_of_thinking|>",
|
| 271 |
+
"<|beginoftext|>"
|
| 272 |
+
],
|
| 273 |
+
"bos_token": null,
|
| 274 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 275 |
+
"clean_up_tokenization_spaces": false,
|
| 276 |
+
"eos_token": "<|endoftext|>",
|
| 277 |
+
"errors": "replace",
|
| 278 |
+
"extra_special_tokens": {},
|
| 279 |
+
"model_max_length": 8192,
|
| 280 |
+
"pad_token": "[PAD]",
|
| 281 |
+
"padding_side": "right",
|
| 282 |
+
"split_special_tokens": false,
|
| 283 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 284 |
+
"unk_token": null
|
| 285 |
+
}
|
vae/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99293255229a29297e2851858db3794497d1b0b09b20c308c1062636ea4bcdd9
|
| 3 |
+
size 335365010
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|