--- license: apache-2.0 pipeline_tag: audio-text-to-text library_name: transformers tags: - audio-reasoning - chain-of-thought - multi-modal - step-audio-r1 --- ## Overview of Step-Audio-R1.1   ### Introduction Step-Audio R1.1 (Realtime) is a major upgrade to Step-Audio-R1, designed for interactive spoken dialogue with both **real-time responsiveness** and **strong reasoning capability**. Unlike conventional streaming speech models that trade intelligence for latency, R1.1 enables *thinking while speaking*, achieving high intelligence without sacrificing speed. ### Mind-Paced Speaking (Low Latency) Based on the research [*Mind-Paced Speaking*](MPS.pdf), the Realtime variant adopts a **Dual-Brain Architecture**: - A **Formulation Brain** responsible for high-level reasoning - An **Articulation Brain** dedicated to speech generation This decoupling allows the model to perform **Chain-of-Thought reasoning during speech output**, maintaining ultra-low latency while handling complex tasks in real time. ### Acoustic-Grounded Reasoning (High Intelligence) To address the *inverted scaling* issue—where reasoning over transcripts can degrade performance—Step-Audio R1.1 grounds its reasoning directly in acoustic representations rather than text alone. Through iterative self-distillation, extended deliberation becomes a strength instead of a liability. This enables effective test-time compute scaling and leads to **state-of-the-art performance**, including top-ranking results on the AA benchmark. ![image](https://cdn-uploads.huggingface.co/production/uploads/64ba9dfdbfd8286d23b5c0fd/GTZwkSO5q0ryc6BUC82uT.png) ![image](https://cdn-uploads.huggingface.co/production/uploads/64ba9dfdbfd8286d23b5c0fd/cN3V5c_6TmXVMPH8tuhu5.png) ![image](https://cdn-uploads.huggingface.co/production/uploads/64ba9dfdbfd8286d23b5c0fd/qx25DGHPuDEK5FK1hBxOB.png) ## Model Usage ### 📜 Requirements - **GPU**: NVIDIA GPUs with CUDA support (tested on 4×L40S/H100/H800/H20). - **Operating System**: Linux. - **Python**: >= 3.10.0. ### ⬇️ Download Model First, you need to download the Step-Audio-R1 model weights. **Method A · Git LFS** ```bash git lfs install git clone https://huggingface.co/stepfun-ai/Step-Audio-R1.1 ``` **Method B · Hugging Face CLI** ```bash hf download stepfun-ai/Step-Audio-R1.1 --local-dir ./Step-Audio-R1.1 ``` ### 🚀 Deployment and Execution We provide two ways to serve the model: Docker (recommended) or compiling the customized vLLM backend. #### 🐳 Method 1 · Run with Docker (Recommended) A customized vLLM image is required. 1. **Pull the image**: ```bash docker pull stepfun2025/vllm:step-audio-2-v20250909 ``` 2. **Start the service**: Assuming the model is downloaded in the `Step-Audio-R1` folder in the current directory. ```bash docker run --rm -ti --gpus all \ -v $(pwd)/Step-Audio-R1.1:/Step-Audio-R1.1 \ -p 9999:9999 \ stepfun2025/vllm:step-audio-2-v20250909 \ -- vllm serve /Step-Audio-R1.1 \ --served-model-name Step-Audio-R1.1 \ --port 9999 \ --max-model-len 16384 \ --max-num-seqs 32 \ --tensor-parallel-size 4 \ --chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("\n", "") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n\n'"'"' -}}{%- endif -%}' \ --enable-log-requests \ --interleave-mm-strings \ --trust-remote-code ``` After the service starts, it will listen on `localhost:9999`. #### 🐳 Method 2 · Run from Source (Compile vLLM) Step-Audio-R1 requires a customized vLLM backend. 1. **Download Source Code**: ```bash git clone https://github.com/stepfun-ai/vllm.git cd vllm ``` 2. **Prepare Environment**: ```bash python3 -m venv .venv source .venv/bin/activate ``` 3. **Install and Compile**: vLLM contains both C++ and Python code. We mainly modified the Python code, so the C++ part can use the pre-compiled version to speed up the process. ```bash # Use pre-compiled C++ extensions (Recommended) VLLM_USE_PRECOMPILED=1 pip install -e . ``` 4. **Switch Branch**: After compilation, switch to the branch that supports Step-Audio. ```bash git checkout feat/step-audio-support ``` 5. **Start the Service**: ```bash # Ensure you are in the vllm directory and the virtual environment is activated source .venv/bin/activate python3 -m vllm.entrypoints.openai.api_server \ --model ../Step-Audio-R1.1 \ --served-model-name Step-Audio-R1.1 \ --port 9999 \ --host 0.0.0.0 \ --max-model-len 65536 \ --max-num-seqs 128 \ --tensor-parallel-size 4 \ --gpu-memory-utilization 0.85 \ --trust-remote-code \ --enable-log-requests \ --interleave-mm-strings \ --chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("\n", "") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n\n'"'"' -}}{%- endif -%}' ``` After the service starts, it will listen on `localhost:9999`.