File size: 8,134 Bytes
5d0796b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "human-eval", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0"]
# ///
import os
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from human_eval.data import write_jsonl, read_problems
from human_eval.evaluation import evaluate_functional_correctness
import tempfile
import json
from tqdm import tqdm
print("="*60)
print("EVALUATION v2: Base vs Fine-tuned on HumanEval")
print("Using correct Instruct format for fine-tuned model")
print("="*60)
# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_MODEL = "stmasson/alizee-coder-devstral-1-small"
NUM_SAMPLES = 1
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 1024 # Increased for reasoning + code
# 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
def load_model(model_name, adapter_name=None):
"""Load model with optional LoRA adapter"""
print(f"\nLoading model: {model_name}")
if adapter_name:
print(f"With adapter: {adapter_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
if adapter_name:
model = PeftModel.from_pretrained(model, adapter_name)
model = model.merge_and_unload()
model.eval()
return model, tokenizer
def extract_python_code(text):
"""Extract Python code from model output"""
# Try to find code in ```python blocks
pattern = r'```python\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip() # Return last code block
# Try to find code in ``` blocks
pattern = r'```\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
# Try to find code after "Solution:" or similar markers
markers = ["**Solution:**", "Solution:", "```"]
for marker in markers:
if marker in text:
code_part = text.split(marker)[-1]
# Clean up
code_part = code_part.replace("```", "").strip()
if code_part:
return code_part
# Return as-is if no pattern found
return text.strip()
def generate_completion_base(model, tokenizer, prompt):
"""Generate code completion for BASE model (direct completion)"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Stop at function boundary
stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]
for stop in stop_tokens:
if stop in completion:
completion = completion[:completion.index(stop)]
return completion
def generate_completion_finetuned(model, tokenizer, prompt, problem_text):
"""Generate code completion for FINE-TUNED model (Instruct format)"""
# Use the training format
instruct_prompt = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{problem_text}\n\nComplete the following function:\n{prompt}\n[/INST]"
inputs = tokenizer(instruct_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Extract code from the response
code = extract_python_code(full_response)
# If extraction failed, try to get just the function body
if "def " in code:
# Find the function and extract body
lines = code.split('\n')
result_lines = []
in_function = False
for line in lines:
if line.strip().startswith("def "):
in_function = True
continue # Skip the def line, HumanEval provides it
if in_function:
result_lines.append(line)
if result_lines:
return '\n'.join(result_lines)
return code
def evaluate_model(model, tokenizer, problems, model_name, is_finetuned=False):
"""Evaluate model on HumanEval"""
print(f"\nEvaluating {model_name}...")
samples = []
for task_id, problem in tqdm(problems.items(), desc=f"Generating ({model_name})"):
prompt = problem["prompt"]
for _ in range(NUM_SAMPLES):
if is_finetuned:
# Use Instruct format for fine-tuned model
completion = generate_completion_finetuned(model, tokenizer, prompt, problem.get("prompt", ""))
else:
# Use direct completion for base model
completion = generate_completion_base(model, tokenizer, prompt)
samples.append({
"task_id": task_id,
"completion": completion
})
# Write samples and evaluate
with tempfile.NamedTemporaryFile(mode='w', suffix='.jsonl', delete=False) as f:
sample_file = f.name
write_jsonl(sample_file, samples)
results = evaluate_functional_correctness(sample_file, k=[1])
os.unlink(sample_file)
return results
def main():
# Load HumanEval problems
print("\nLoading HumanEval problems...")
problems = read_problems()
print(f"Total problems: {len(problems)}")
results = {}
# Evaluate base model
print("\n" + "="*60)
print("EVALUATING BASE MODEL (direct completion)")
print("="*60)
base_model, base_tokenizer = load_model(BASE_MODEL)
results["base"] = evaluate_model(base_model, base_tokenizer, problems, "Devstral-Small (Base)", is_finetuned=False)
print(f"\nBase Model Results: {results['base']}")
# Free memory
del base_model
torch.cuda.empty_cache()
# Evaluate fine-tuned model
print("\n" + "="*60)
print("EVALUATING FINE-TUNED MODEL (Instruct format)")
print("="*60)
ft_model, ft_tokenizer = load_model(BASE_MODEL, FINETUNED_MODEL)
results["finetuned"] = evaluate_model(ft_model, ft_tokenizer, problems, "Alizee-Coder (Fine-tuned)", is_finetuned=True)
print(f"\nFine-tuned Model Results: {results['finetuned']}")
# Summary
print("\n" + "="*60)
print("COMPARISON SUMMARY (v2 - Correct Prompt Format)")
print("="*60)
print(f"\n{'Model':<45} {'pass@1':>10}")
print("-"*57)
print(f"{'Devstral-Small-2505 (Base)':<45} {results['base']['pass@1']*100:>9.2f}%")
print(f"{'Alizee-Coder-Devstral (Fine-tuned+Instruct)':<45} {results['finetuned']['pass@1']*100:>9.2f}%")
improvement = (results['finetuned']['pass@1'] - results['base']['pass@1']) * 100
sign = "+" if improvement >= 0 else ""
print(f"\n{'Improvement:':<45} {sign}{improvement:>9.2f}%")
# Save results
with open("eval_results_v2.json", "w") as f:
json.dump({
"base_pass@1": float(results['base']['pass@1']),
"finetuned_pass@1": float(results['finetuned']['pass@1']),
"improvement": float(improvement)
}, f, indent=2)
print("\nResults saved to eval_results_v2.json")
if __name__ == "__main__":
main()
|