File size: 8,134 Bytes
5d0796b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "human-eval", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0"]
# ///

import os
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from human_eval.data import write_jsonl, read_problems
from human_eval.evaluation import evaluate_functional_correctness
import tempfile
import json
from tqdm import tqdm

print("="*60)
print("EVALUATION v2: Base vs Fine-tuned on HumanEval")
print("Using correct Instruct format for fine-tuned model")
print("="*60)

# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_MODEL = "stmasson/alizee-coder-devstral-1-small"
NUM_SAMPLES = 1
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 1024  # Increased for reasoning + code

# 4-bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
)

def load_model(model_name, adapter_name=None):
    """Load model with optional LoRA adapter"""
    print(f"\nLoading model: {model_name}")
    if adapter_name:
        print(f"With adapter: {adapter_name}")

    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        quantization_config=bnb_config,
        device_map="auto",
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
    )

    if adapter_name:
        model = PeftModel.from_pretrained(model, adapter_name)
        model = model.merge_and_unload()

    model.eval()
    return model, tokenizer

def extract_python_code(text):
    """Extract Python code from model output"""
    # Try to find code in ```python blocks
    pattern = r'```python\s*(.*?)\s*```'
    matches = re.findall(pattern, text, re.DOTALL)
    if matches:
        return matches[-1].strip()  # Return last code block

    # Try to find code in ``` blocks
    pattern = r'```\s*(.*?)\s*```'
    matches = re.findall(pattern, text, re.DOTALL)
    if matches:
        return matches[-1].strip()

    # Try to find code after "Solution:" or similar markers
    markers = ["**Solution:**", "Solution:", "```"]
    for marker in markers:
        if marker in text:
            code_part = text.split(marker)[-1]
            # Clean up
            code_part = code_part.replace("```", "").strip()
            if code_part:
                return code_part

    # Return as-is if no pattern found
    return text.strip()

def generate_completion_base(model, tokenizer, prompt):
    """Generate code completion for BASE model (direct completion)"""
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=512,
            temperature=TEMPERATURE,
            do_sample=True if TEMPERATURE > 0 else False,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)

    # Stop at function boundary
    stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]
    for stop in stop_tokens:
        if stop in completion:
            completion = completion[:completion.index(stop)]

    return completion

def generate_completion_finetuned(model, tokenizer, prompt, problem_text):
    """Generate code completion for FINE-TUNED model (Instruct format)"""
    # Use the training format
    instruct_prompt = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{problem_text}\n\nComplete the following function:\n{prompt}\n[/INST]"

    inputs = tokenizer(instruct_prompt, return_tensors="pt").to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=MAX_NEW_TOKENS,
            temperature=TEMPERATURE,
            do_sample=True if TEMPERATURE > 0 else False,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)

    # Extract code from the response
    code = extract_python_code(full_response)

    # If extraction failed, try to get just the function body
    if "def " in code:
        # Find the function and extract body
        lines = code.split('\n')
        result_lines = []
        in_function = False
        for line in lines:
            if line.strip().startswith("def "):
                in_function = True
                continue  # Skip the def line, HumanEval provides it
            if in_function:
                result_lines.append(line)
        if result_lines:
            return '\n'.join(result_lines)

    return code

def evaluate_model(model, tokenizer, problems, model_name, is_finetuned=False):
    """Evaluate model on HumanEval"""
    print(f"\nEvaluating {model_name}...")
    samples = []

    for task_id, problem in tqdm(problems.items(), desc=f"Generating ({model_name})"):
        prompt = problem["prompt"]

        for _ in range(NUM_SAMPLES):
            if is_finetuned:
                # Use Instruct format for fine-tuned model
                completion = generate_completion_finetuned(model, tokenizer, prompt, problem.get("prompt", ""))
            else:
                # Use direct completion for base model
                completion = generate_completion_base(model, tokenizer, prompt)

            samples.append({
                "task_id": task_id,
                "completion": completion
            })

    # Write samples and evaluate
    with tempfile.NamedTemporaryFile(mode='w', suffix='.jsonl', delete=False) as f:
        sample_file = f.name
        write_jsonl(sample_file, samples)

    results = evaluate_functional_correctness(sample_file, k=[1])
    os.unlink(sample_file)

    return results

def main():
    # Load HumanEval problems
    print("\nLoading HumanEval problems...")
    problems = read_problems()
    print(f"Total problems: {len(problems)}")

    results = {}

    # Evaluate base model
    print("\n" + "="*60)
    print("EVALUATING BASE MODEL (direct completion)")
    print("="*60)
    base_model, base_tokenizer = load_model(BASE_MODEL)
    results["base"] = evaluate_model(base_model, base_tokenizer, problems, "Devstral-Small (Base)", is_finetuned=False)
    print(f"\nBase Model Results: {results['base']}")

    # Free memory
    del base_model
    torch.cuda.empty_cache()

    # Evaluate fine-tuned model
    print("\n" + "="*60)
    print("EVALUATING FINE-TUNED MODEL (Instruct format)")
    print("="*60)
    ft_model, ft_tokenizer = load_model(BASE_MODEL, FINETUNED_MODEL)
    results["finetuned"] = evaluate_model(ft_model, ft_tokenizer, problems, "Alizee-Coder (Fine-tuned)", is_finetuned=True)
    print(f"\nFine-tuned Model Results: {results['finetuned']}")

    # Summary
    print("\n" + "="*60)
    print("COMPARISON SUMMARY (v2 - Correct Prompt Format)")
    print("="*60)
    print(f"\n{'Model':<45} {'pass@1':>10}")
    print("-"*57)
    print(f"{'Devstral-Small-2505 (Base)':<45} {results['base']['pass@1']*100:>9.2f}%")
    print(f"{'Alizee-Coder-Devstral (Fine-tuned+Instruct)':<45} {results['finetuned']['pass@1']*100:>9.2f}%")

    improvement = (results['finetuned']['pass@1'] - results['base']['pass@1']) * 100
    sign = "+" if improvement >= 0 else ""
    print(f"\n{'Improvement:':<45} {sign}{improvement:>9.2f}%")

    # Save results
    with open("eval_results_v2.json", "w") as f:
        json.dump({
            "base_pass@1": float(results['base']['pass@1']),
            "finetuned_pass@1": float(results['finetuned']['pass@1']),
            "improvement": float(improvement)
        }, f, indent=2)
    print("\nResults saved to eval_results_v2.json")

if __name__ == "__main__":
    main()