File size: 9,371 Bytes
807886d 6d492a0 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d f5c4f4a 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 6d492a0 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 517aef6 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 80fe464 807886d 471ffcc 807886d 471ffcc 80fe464 807886d 471ffcc 80fe464 807886d 471ffcc 807886d 471ffcc 807886d 0d48090 f5c4f4a 807886d 471ffcc 807886d 80fe464 807886d e388b5a 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d 471ffcc 807886d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "transformers>=4.45.0",
# "trl>=0.12.0",
# "peft>=0.13.0",
# "datasets>=3.0.0",
# "accelerate>=1.0.0",
# "bitsandbytes>=0.44.0",
# "huggingface_hub>=0.26.0",
# "torch>=2.4.0",
# "einops>=0.8.0",
# "sentencepiece>=0.2.0",
# ]
# [tool.uv]
# index-strategy = "unsafe-best-match"
# extra-index-url = ["https://download.pytorch.org/whl/cu124"]
# ///
"""
Script d'entraînement SFT pour le modèle n8n Expert.
Usage sur HuggingFace Jobs:
hf jobs uv run \
--script train_n8n_sft.py \
--flavor h100x1 \
--name n8n-expert-sft \
--timeout 24h
Variables d'environnement requises:
- HF_TOKEN: Token HuggingFace avec accès en écriture
- WANDB_API_KEY: (optionnel) Pour le tracking W&B
"""
import os
import json
import torch
from datasets import Dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from trl import SFTTrainer, SFTConfig
from huggingface_hub import login, hf_hub_download
# ============================================================================
# CONFIGURATION
# ============================================================================
# Modele de base
MODEL_NAME = os.environ.get("BASE_MODEL", "Qwen/Qwen2.5-14B-Instruct")
# Dataset
DATASET_REPO = "stmasson/n8n-agentic-multitask"
TRAIN_FILE = "data/multitask_large/train.jsonl"
VAL_FILE = "data/multitask_large/val.jsonl"
# Output
OUTPUT_DIR = "./n8n-expert-sft"
HF_REPO = os.environ.get("HF_REPO", "stmasson/n8n-expert-14b-sft")
# Hyperparametres
NUM_EPOCHS = int(os.environ.get("NUM_EPOCHS", "3"))
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", "2"))
GRAD_ACCUM = int(os.environ.get("GRAD_ACCUM", "8"))
LEARNING_RATE = float(os.environ.get("LEARNING_RATE", "2e-5"))
MAX_SEQ_LENGTH = int(os.environ.get("MAX_SEQ_LENGTH", "8192"))
# LoRA
LORA_R = int(os.environ.get("LORA_R", "64"))
LORA_ALPHA = int(os.environ.get("LORA_ALPHA", "128"))
LORA_DROPOUT = float(os.environ.get("LORA_DROPOUT", "0.05"))
# Quantization (pour economiser la VRAM) - 4-bit par defaut pour H100
USE_4BIT = os.environ.get("USE_4BIT", "true").lower() == "true"
# ============================================================================
# AUTHENTIFICATION
# ============================================================================
print("=" * 60)
print("ENTRAINEMENT SFT - N8N EXPERT")
print("=" * 60)
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
print("Authentifie sur HuggingFace")
else:
print("Warning: HF_TOKEN non defini, push desactive")
# Desactive wandb pour eviter les conflits de dependances
report_to = "none"
print("Tracking desactive (pas de wandb)")
# ============================================================================
# CHARGEMENT DU MODELE
# ============================================================================
print(f"\nChargement du modele: {MODEL_NAME}")
# Configuration quantization si necessaire
if USE_4BIT:
print("Mode 4-bit active")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
model = prepare_model_for_kbit_training(model)
else:
print("Mode bfloat16")
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa", # SDPA is built into PyTorch, no extra install needed
device_map="auto",
trust_remote_code=True,
)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
print(f"Modele charge: {model.config.num_hidden_layers} layers, {model.config.hidden_size} hidden size")
# ============================================================================
# CONFIGURATION LORA
# ============================================================================
print(f"\nConfiguration LoRA: r={LORA_R}, alpha={LORA_ALPHA}")
lora_config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
],
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM"
)
# ============================================================================
# CHARGEMENT DU DATASET (FIX: chargement direct JSON pour eviter les conflits de schema)
# ============================================================================
print(f"\nChargement du dataset: {DATASET_REPO}")
def load_jsonl_dataset(repo_id: str, filename: str) -> Dataset:
"""
Charge un dataset JSONL directement en ne gardant que la colonne 'messages'.
Evite les problemes de schema avec les colonnes struct comme 'nodes_used'.
"""
# Telecharger le fichier
local_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
repo_type="dataset"
)
# Lire le JSONL et extraire uniquement 'messages'
messages_list = []
with open(local_path, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
messages_list.append({"messages": data["messages"]})
# Creer le Dataset
return Dataset.from_list(messages_list)
# Charger train et validation
train_dataset = load_jsonl_dataset(DATASET_REPO, TRAIN_FILE)
val_dataset = load_jsonl_dataset(DATASET_REPO, VAL_FILE)
print(f"Train: {len(train_dataset)} exemples")
print(f"Validation: {len(val_dataset)} exemples")
# Fonction de formatage
def format_example(example):
"""Formate les messages en texte pour l'entrainement"""
messages = example["messages"]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=False
)
return {"text": text}
# Appliquer le formatage
print("Formatage des donnees...")
train_dataset = train_dataset.map(format_example, remove_columns=train_dataset.column_names)
val_dataset = val_dataset.map(format_example, remove_columns=val_dataset.column_names)
# Afficher un exemple
print("\nExemple de donnees formatees:")
print(train_dataset[0]["text"][:500] + "...")
# ============================================================================
# CONFIGURATION D'ENTRAINEMENT
# ============================================================================
print(f"\nConfiguration d'entrainement:")
print(f" - Epochs: {NUM_EPOCHS}")
print(f" - Batch size: {BATCH_SIZE}")
print(f" - Gradient accumulation: {GRAD_ACCUM}")
print(f" - Effective batch size: {BATCH_SIZE * GRAD_ACCUM}")
print(f" - Learning rate: {LEARNING_RATE}")
print(f" - Max sequence length: {MAX_SEQ_LENGTH}")
training_args = SFTConfig(
output_dir=OUTPUT_DIR,
num_train_epochs=NUM_EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRAD_ACCUM,
learning_rate=LEARNING_RATE,
lr_scheduler_type="cosine",
warmup_ratio=0.1,
weight_decay=0.01,
bf16=True,
tf32=True,
logging_steps=10,
save_strategy="steps",
save_steps=500,
save_total_limit=3,
eval_strategy="steps",
eval_steps=500,
max_length=MAX_SEQ_LENGTH, # renamed from max_seq_length in TRL 0.12+
packing=False, # Disabled: packing requires flash attention for proper cross-attention masking
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
dataset_text_field="text",
report_to=report_to,
run_name="n8n-expert-sft",
hub_model_id=HF_REPO if hf_token else None,
push_to_hub=bool(hf_token),
hub_strategy="checkpoint",
)
# ============================================================================
# ENTRAINEMENT
# ============================================================================
print("\nInitialisation du trainer...")
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
peft_config=lora_config,
processing_class=tokenizer, # renamed from tokenizer in TRL 0.12+
)
# Afficher les parametres entrainables
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
print(f"\nParametres entrainables: {trainable_params:,} / {total_params:,} ({100 * trainable_params / total_params:.2f}%)")
print("\n" + "=" * 60)
print("DEMARRAGE DE L'ENTRAINEMENT")
print("=" * 60)
trainer.train()
# ============================================================================
# SAUVEGARDE
# ============================================================================
print("\nSauvegarde du modele...")
trainer.save_model(f"{OUTPUT_DIR}/final")
if hf_token:
print(f"Push vers {HF_REPO}...")
trainer.push_to_hub()
print(f"Modele disponible sur: https://huggingface.co/{HF_REPO}")
print("\n" + "=" * 60)
print("ENTRAINEMENT TERMINE")
print("=" * 60)
|