File size: 8,987 Bytes
159c050 188cdd5 159c050 188cdd5 159c050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "transformers>=4.45.0",
# "trl>=0.12.0",
# "peft>=0.13.0",
# "datasets>=3.0.0",
# "accelerate>=1.0.0",
# "huggingface_hub>=0.26.0",
# "torch>=2.4.0",
# ]
# [tool.uv]
# index-strategy = "unsafe-best-match"
# extra-index-url = ["https://download.pytorch.org/whl/cu124"]
# ///
"""
SFT Multi-Task Training Script for n8n Agent
This script fine-tunes the DPO-trained Qwen3-0.6B model on multi-task n8n workflows.
It builds on the reasoning capabilities from DPO training and adds task-specific skills.
Tasks covered:
- generate: Create workflows from descriptions
- edit: Modify existing workflows
- fix: Correct errors in workflows
- explain: Explain what workflows do
- debug: Diagnose execution issues
- improve: Optimize and enhance workflows
Usage:
hf jobs uv run \
--script train_qwen3_sft_multitask.py \
--flavor l4x1 \
--timeout 24h
"""
import os
import json
import torch
from datasets import Dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, PeftModel, get_peft_model
from trl import SFTTrainer, SFTConfig
from huggingface_hub import login, hf_hub_download
# ============================================================================
# CONFIGURATION
# ============================================================================
# Base model (the DPO-trained model with reasoning capabilities)
BASE_MODEL = os.environ.get("BASE_MODEL", "Qwen/Qwen3-0.6B")
DPO_ADAPTER = os.environ.get("DPO_ADAPTER", "stmasson/qwen3-0.6b-n8n-reasoning")
# Dataset
DATASET_REPO = "stmasson/n8n-agentic-multitask"
TRAIN_FILE = "data/multitask_large/train.jsonl"
VAL_FILE = "data/multitask_large/val.jsonl"
# Output
OUTPUT_DIR = "./qwen3-sft-multitask"
HF_REPO = os.environ.get("HF_REPO", "stmasson/qwen3-0.6b-n8n-agent")
# Hyperparameters
NUM_EPOCHS = int(os.environ.get("NUM_EPOCHS", "1"))
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", "1"))
GRAD_ACCUM = int(os.environ.get("GRAD_ACCUM", "8"))
LEARNING_RATE = float(os.environ.get("LEARNING_RATE", "1e-5"))
MAX_SEQ_LENGTH = int(os.environ.get("MAX_SEQ_LENGTH", "4096"))
# LoRA (continuing from DPO adapter)
LORA_R = int(os.environ.get("LORA_R", "32"))
LORA_ALPHA = int(os.environ.get("LORA_ALPHA", "64"))
LORA_DROPOUT = float(os.environ.get("LORA_DROPOUT", "0.05"))
# ============================================================================
# AUTHENTICATION
# ============================================================================
print("=" * 60)
print("SFT MULTI-TASK TRAINING - N8N AGENT")
print("=" * 60)
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
print("Authenticated with HuggingFace")
else:
print("Warning: HF_TOKEN not set, push disabled")
# ============================================================================
# LOAD MODEL WITH DPO ADAPTER
# ============================================================================
print(f"\nLoading base model: {BASE_MODEL}")
print(f"Loading DPO adapter: {DPO_ADAPTER}")
# Load base model
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa",
device_map="auto",
trust_remote_code=True,
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# Load DPO adapter and merge it into the base model
print("Loading and merging DPO adapter...")
model = PeftModel.from_pretrained(model, DPO_ADAPTER)
model = model.merge_and_unload()
print("DPO adapter merged successfully!")
print(f"Model loaded: {model.config.num_hidden_layers} layers, {model.config.hidden_size} hidden size")
# ============================================================================
# NEW LORA CONFIG FOR SFT
# ============================================================================
print(f"\nNew LoRA config for SFT: r={LORA_R}, alpha={LORA_ALPHA}")
lora_config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
],
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM"
)
# ============================================================================
# LOAD DATASET
# ============================================================================
print(f"\nLoading dataset: {DATASET_REPO}")
def load_jsonl_dataset(repo_id: str, filename: str) -> Dataset:
"""Load JSONL dataset and extract only messages column."""
local_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
repo_type="dataset"
)
messages_list = []
with open(local_path, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
messages_list.append({"messages": data["messages"]})
return Dataset.from_list(messages_list)
# Load train and validation
train_dataset = load_jsonl_dataset(DATASET_REPO, TRAIN_FILE)
val_dataset = load_jsonl_dataset(DATASET_REPO, VAL_FILE)
print(f"Train: {len(train_dataset)} examples")
print(f"Validation: {len(val_dataset)} examples")
# Filter out very long examples to avoid OOM
def filter_by_length(example):
"""Filter examples that would be too long."""
total_len = sum(len(m.get('content', '')) for m in example['messages'])
return total_len < 30000 # ~7500 tokens max
print("Filtering long examples...")
train_dataset = train_dataset.filter(filter_by_length)
val_dataset = val_dataset.filter(filter_by_length)
print(f"After filtering - Train: {len(train_dataset)}, Val: {len(val_dataset)}")
# Format examples
def format_example(example):
"""Format messages to text for training."""
messages = example["messages"]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=False
)
return {"text": text}
print("Formatting data...")
train_dataset = train_dataset.map(format_example, remove_columns=train_dataset.column_names)
val_dataset = val_dataset.map(format_example, remove_columns=val_dataset.column_names)
# Show example
print("\nExample formatted data:")
print(train_dataset[0]["text"][:500] + "...")
# ============================================================================
# TRAINING CONFIGURATION
# ============================================================================
print(f"\nTraining configuration:")
print(f" - Epochs: {NUM_EPOCHS}")
print(f" - Batch size: {BATCH_SIZE}")
print(f" - Gradient accumulation: {GRAD_ACCUM}")
print(f" - Effective batch size: {BATCH_SIZE * GRAD_ACCUM}")
print(f" - Learning rate: {LEARNING_RATE}")
print(f" - Max sequence length: {MAX_SEQ_LENGTH}")
training_args = SFTConfig(
output_dir=OUTPUT_DIR,
num_train_epochs=NUM_EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRAD_ACCUM,
learning_rate=LEARNING_RATE,
lr_scheduler_type="cosine",
warmup_ratio=0.05,
weight_decay=0.01,
bf16=True,
tf32=True,
logging_steps=50,
save_strategy="steps",
save_steps=1000,
save_total_limit=3,
eval_strategy="steps",
eval_steps=1000,
max_seq_length=MAX_SEQ_LENGTH,
packing=False,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
dataset_text_field="text",
report_to="none",
run_name="qwen3-sft-multitask",
hub_model_id=HF_REPO if hf_token else None,
push_to_hub=bool(hf_token),
hub_strategy="checkpoint",
)
# ============================================================================
# TRAINING
# ============================================================================
print("\nInitializing SFT trainer...")
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
peft_config=lora_config,
processing_class=tokenizer,
)
# Show trainable parameters
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
print(f"\nTrainable parameters: {trainable_params:,} / {total_params:,} ({100 * trainable_params / total_params:.2f}%)")
print("\n" + "=" * 60)
print("STARTING SFT MULTI-TASK TRAINING")
print("=" * 60)
trainer.train()
# ============================================================================
# SAVE MODEL
# ============================================================================
print("\nSaving model...")
trainer.save_model(f"{OUTPUT_DIR}/final")
if hf_token:
print(f"Pushing to {HF_REPO}...")
trainer.push_to_hub()
print(f"Model available at: https://huggingface.co/{HF_REPO}")
print("\n" + "=" * 60)
print("SFT MULTI-TASK TRAINING COMPLETE")
print("=" * 60)
|