|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
SFT training for n8n agentic multi-task workflows. |
|
|
|
|
|
Continues fine-tuning from stmasson/mistral-7b-n8n-thinking-orpo (ORPO-trained model) |
|
|
on the n8n-agentic-multitask dataset for complex multi-step tasks: |
|
|
- generate: Create n8n workflows from descriptions |
|
|
- edit: Modify existing workflows |
|
|
- fix: Repair broken workflows |
|
|
- improve: Optimize and enhance workflows |
|
|
- explain: Describe what workflows do |
|
|
- debug: Diagnose workflow issues |
|
|
|
|
|
The model learns to use <thinking> tags for chain-of-thought reasoning |
|
|
before producing structured JSON outputs. |
|
|
""" |
|
|
|
|
|
import trackio |
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from peft import LoraConfig, PeftModel |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
from trl import SFTTrainer, SFTConfig |
|
|
|
|
|
|
|
|
|
|
|
print("Loading n8n-agentic-multitask dataset...") |
|
|
|
|
|
|
|
|
train_stream = load_dataset( |
|
|
"stmasson/n8n-agentic-multitask", |
|
|
data_files="data/multitask_large/train.jsonl", |
|
|
split="train", |
|
|
streaming=True |
|
|
) |
|
|
eval_stream = load_dataset( |
|
|
"stmasson/n8n-agentic-multitask", |
|
|
data_files="data/multitask_large/val.jsonl", |
|
|
split="train", |
|
|
streaming=True |
|
|
) |
|
|
|
|
|
|
|
|
def extract_messages(example): |
|
|
return {"messages": example["messages"]} |
|
|
|
|
|
train_dataset = train_stream.map(extract_messages, remove_columns=["task_type", "metadata"]) |
|
|
eval_dataset = eval_stream.map(extract_messages, remove_columns=["task_type", "metadata"]) |
|
|
|
|
|
|
|
|
from datasets import Dataset |
|
|
print("Converting streaming dataset to memory...") |
|
|
train_dataset = Dataset.from_generator(lambda: (x for x in train_dataset)) |
|
|
eval_dataset = Dataset.from_generator(lambda: (x for x in eval_dataset)) |
|
|
|
|
|
print(f"Train: {len(train_dataset)} examples") |
|
|
print(f"Eval: {len(eval_dataset)} examples") |
|
|
|
|
|
|
|
|
MODEL_NAME = "stmasson/mistral-7b-n8n-thinking-orpo" |
|
|
BASE_MODEL = "stmasson/mistral-7b-n8n-workflows" |
|
|
|
|
|
print(f"Loading tokenizer from {MODEL_NAME}...") |
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
|
|
|
print(f"Loading base model {BASE_MODEL} (full precision for merge)...") |
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
|
BASE_MODEL, |
|
|
torch_dtype=torch.bfloat16, |
|
|
device_map="auto", |
|
|
attn_implementation="sdpa", |
|
|
) |
|
|
|
|
|
print(f"Loading ORPO adapter from {MODEL_NAME}...") |
|
|
model = PeftModel.from_pretrained(base_model, MODEL_NAME) |
|
|
|
|
|
print("Merging ORPO adapter into base model...") |
|
|
model = model.merge_and_unload() |
|
|
print("ORPO adapter merged successfully!") |
|
|
|
|
|
|
|
|
model.gradient_checkpointing_enable() |
|
|
model.enable_input_require_grads() |
|
|
|
|
|
|
|
|
lora_config = LoraConfig( |
|
|
r=32, |
|
|
lora_alpha=64, |
|
|
lora_dropout=0.05, |
|
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], |
|
|
task_type="CAUSAL_LM", |
|
|
) |
|
|
|
|
|
|
|
|
config = SFTConfig( |
|
|
|
|
|
output_dir="mistral-7b-n8n-agentic-multitask", |
|
|
push_to_hub=True, |
|
|
hub_model_id="stmasson/mistral-7b-n8n-agentic-multitask", |
|
|
hub_strategy="every_save", |
|
|
hub_private_repo=False, |
|
|
|
|
|
|
|
|
num_train_epochs=1, |
|
|
per_device_train_batch_size=1, |
|
|
gradient_accumulation_steps=32, |
|
|
learning_rate=2e-5, |
|
|
max_length=4096, |
|
|
|
|
|
|
|
|
gradient_checkpointing=True, |
|
|
bf16=True, |
|
|
|
|
|
|
|
|
logging_steps=25, |
|
|
save_strategy="steps", |
|
|
save_steps=500, |
|
|
save_total_limit=3, |
|
|
|
|
|
|
|
|
eval_strategy="steps", |
|
|
eval_steps=500, |
|
|
|
|
|
|
|
|
warmup_ratio=0.03, |
|
|
lr_scheduler_type="cosine", |
|
|
optim="adamw_8bit", |
|
|
|
|
|
|
|
|
report_to="trackio", |
|
|
project="n8n-agentic-training", |
|
|
run_name="mistral-7b-multitask-sft", |
|
|
) |
|
|
|
|
|
|
|
|
print("Initializing SFT trainer...") |
|
|
trainer = SFTTrainer( |
|
|
model=model, |
|
|
processing_class=tokenizer, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
peft_config=lora_config, |
|
|
args=config, |
|
|
) |
|
|
|
|
|
print("Starting SFT training...") |
|
|
print(f" Base: stmasson/mistral-7b-n8n-thinking-orpo (merged)") |
|
|
print(f" Dataset: stmasson/n8n-agentic-multitask") |
|
|
print(f" Output: stmasson/mistral-7b-n8n-agentic-multitask") |
|
|
print(f" Tasks: generate, edit, fix, improve, explain, debug") |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
print("Pushing final model to Hub...") |
|
|
trainer.push_to_hub() |
|
|
|
|
|
|
|
|
trackio.finish() |
|
|
|
|
|
print("Training complete!") |
|
|
print("Model: https://huggingface.co/stmasson/mistral-7b-n8n-agentic-multitask") |
|
|
print("Metrics: https://huggingface.co/spaces/stmasson/trackio") |
|
|
|