Upload train_alizee_coder.py with huggingface_hub
Browse files- train_alizee_coder.py +131 -0
train_alizee_coder.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# dependencies = ["trl>=0.12.0", "peft>=0.7.0", "trackio", "datasets", "transformers>=4.45.0", "accelerate", "bitsandbytes", "torch"]
|
| 3 |
+
# ///
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
from peft import LoraConfig, TaskType
|
| 9 |
+
from trl import SFTTrainer, SFTConfig
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 11 |
+
import trackio
|
| 12 |
+
|
| 13 |
+
print("="*50)
|
| 14 |
+
print("Starting Alizee Coder Devstral Training")
|
| 15 |
+
print("="*50)
|
| 16 |
+
|
| 17 |
+
# Configuration
|
| 18 |
+
MODEL_NAME = "mistralai/Devstral-Small-2505"
|
| 19 |
+
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
|
| 20 |
+
DATASET_SIZE = 10000
|
| 21 |
+
|
| 22 |
+
# Verify HF_TOKEN
|
| 23 |
+
if not os.environ.get("HF_TOKEN"):
|
| 24 |
+
raise ValueError("HF_TOKEN not set!")
|
| 25 |
+
print("HF_TOKEN verified")
|
| 26 |
+
|
| 27 |
+
print(f"Loading dataset nvidia/OpenCodeReasoning...")
|
| 28 |
+
try:
|
| 29 |
+
dataset = load_dataset("nvidia/OpenCodeReasoning", split="split_0")
|
| 30 |
+
dataset = dataset.shuffle(seed=42).select(range(min(DATASET_SIZE, len(dataset))))
|
| 31 |
+
print(f"Dataset loaded: {len(dataset)} examples")
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print(f"Error loading dataset: {e}")
|
| 34 |
+
raise
|
| 35 |
+
|
| 36 |
+
# Split train/eval
|
| 37 |
+
dataset_split = dataset.train_test_split(test_size=0.05, seed=42)
|
| 38 |
+
train_dataset = dataset_split["train"]
|
| 39 |
+
eval_dataset = dataset_split["test"]
|
| 40 |
+
print(f"Train: {len(train_dataset)}, Eval: {len(eval_dataset)}")
|
| 41 |
+
|
| 42 |
+
# Format for code reasoning
|
| 43 |
+
def format_example(example):
|
| 44 |
+
solution = example.get('solution', '') or ''
|
| 45 |
+
output = example.get('output', '') or ''
|
| 46 |
+
text = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{example['input']}\n[/INST]\n\n**Reasoning:**\n{output}\n\n**Solution:**\n```python\n{solution}\n```</s>"
|
| 47 |
+
return {"text": text}
|
| 48 |
+
|
| 49 |
+
print("Formatting dataset...")
|
| 50 |
+
train_dataset = train_dataset.map(format_example, remove_columns=train_dataset.column_names)
|
| 51 |
+
eval_dataset = eval_dataset.map(format_example, remove_columns=eval_dataset.column_names)
|
| 52 |
+
print("Dataset formatted")
|
| 53 |
+
|
| 54 |
+
# Load tokenizer
|
| 55 |
+
print(f"Loading tokenizer...")
|
| 56 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 57 |
+
if tokenizer.pad_token is None:
|
| 58 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 59 |
+
print("Tokenizer loaded")
|
| 60 |
+
|
| 61 |
+
# 4-bit quantization
|
| 62 |
+
bnb_config = BitsAndBytesConfig(
|
| 63 |
+
load_in_4bit=True,
|
| 64 |
+
bnb_4bit_quant_type="nf4",
|
| 65 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 66 |
+
bnb_4bit_use_double_quant=True,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
print(f"Loading model {MODEL_NAME}...")
|
| 70 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 71 |
+
MODEL_NAME,
|
| 72 |
+
quantization_config=bnb_config,
|
| 73 |
+
device_map="auto",
|
| 74 |
+
trust_remote_code=True,
|
| 75 |
+
torch_dtype=torch.bfloat16,
|
| 76 |
+
)
|
| 77 |
+
print("Model loaded")
|
| 78 |
+
|
| 79 |
+
# LoRA configuration
|
| 80 |
+
lora_config = LoraConfig(
|
| 81 |
+
r=32,
|
| 82 |
+
lora_alpha=64,
|
| 83 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
| 84 |
+
lora_dropout=0.05,
|
| 85 |
+
bias="none",
|
| 86 |
+
task_type=TaskType.CAUSAL_LM,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Training config
|
| 90 |
+
training_config = SFTConfig(
|
| 91 |
+
output_dir="./alizee-coder-devstral-1-small",
|
| 92 |
+
num_train_epochs=1,
|
| 93 |
+
per_device_train_batch_size=1,
|
| 94 |
+
per_device_eval_batch_size=1,
|
| 95 |
+
gradient_accumulation_steps=16,
|
| 96 |
+
gradient_checkpointing=True,
|
| 97 |
+
learning_rate=2e-4,
|
| 98 |
+
lr_scheduler_type="cosine",
|
| 99 |
+
warmup_ratio=0.1,
|
| 100 |
+
max_length=4096,
|
| 101 |
+
logging_steps=10,
|
| 102 |
+
save_strategy="steps",
|
| 103 |
+
save_steps=200,
|
| 104 |
+
eval_strategy="steps",
|
| 105 |
+
eval_steps=200,
|
| 106 |
+
bf16=True,
|
| 107 |
+
push_to_hub=True,
|
| 108 |
+
hub_model_id=OUTPUT_REPO,
|
| 109 |
+
hub_strategy="every_save",
|
| 110 |
+
report_to="trackio",
|
| 111 |
+
run_name="alizee-coder-devstral-1-small",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
print("Initializing trainer...")
|
| 115 |
+
trainer = SFTTrainer(
|
| 116 |
+
model=model,
|
| 117 |
+
args=training_config,
|
| 118 |
+
train_dataset=train_dataset,
|
| 119 |
+
eval_dataset=eval_dataset,
|
| 120 |
+
peft_config=lora_config,
|
| 121 |
+
processing_class=tokenizer,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
print("="*50)
|
| 125 |
+
print("STARTING TRAINING")
|
| 126 |
+
print("="*50)
|
| 127 |
+
trainer.train()
|
| 128 |
+
|
| 129 |
+
print("Pushing to Hub...")
|
| 130 |
+
trainer.push_to_hub()
|
| 131 |
+
print(f"Done! Model: https://huggingface.co/{OUTPUT_REPO}")
|