Upload scripts/eval_n8n_model.py with huggingface_hub
Browse files- scripts/eval_n8n_model.py +409 -0
scripts/eval_n8n_model.py
ADDED
|
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "transformers>=4.45.0",
|
| 5 |
+
# "datasets>=3.0.0",
|
| 6 |
+
# "accelerate>=1.0.0",
|
| 7 |
+
# "huggingface_hub>=0.26.0",
|
| 8 |
+
# "torch>=2.4.0",
|
| 9 |
+
# "tqdm>=4.66.0",
|
| 10 |
+
# "pandas>=2.0.0",
|
| 11 |
+
# ]
|
| 12 |
+
# [tool.uv]
|
| 13 |
+
# extra-index-url = ["https://download.pytorch.org/whl/cu124"]
|
| 14 |
+
# ///
|
| 15 |
+
"""
|
| 16 |
+
Script d'évaluation pour le modèle n8n Expert.
|
| 17 |
+
|
| 18 |
+
Métriques:
|
| 19 |
+
1. JSON Validity - Le output est-il du JSON valide?
|
| 20 |
+
2. Schema Compliance - Le workflow suit-il le schéma n8n?
|
| 21 |
+
3. Node Accuracy - Les types de nodes sont-ils corrects?
|
| 22 |
+
4. Connection Logic - Les connexions sont-elles cohérentes?
|
| 23 |
+
5. Thinking Quality - Le raisonnement est-il présent et structuré?
|
| 24 |
+
|
| 25 |
+
Usage:
|
| 26 |
+
python eval_n8n_model.py --model stmasson/n8n-expert-14b --samples 100
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
import os
|
| 30 |
+
import json
|
| 31 |
+
import argparse
|
| 32 |
+
import re
|
| 33 |
+
from typing import Dict, List, Any, Tuple
|
| 34 |
+
from dataclasses import dataclass
|
| 35 |
+
from tqdm import tqdm
|
| 36 |
+
import pandas as pd
|
| 37 |
+
import torch
|
| 38 |
+
from datasets import load_dataset
|
| 39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 40 |
+
from huggingface_hub import login
|
| 41 |
+
|
| 42 |
+
# ============================================================================
|
| 43 |
+
# CONFIGURATION
|
| 44 |
+
# ============================================================================
|
| 45 |
+
|
| 46 |
+
# Types de nodes n8n valides (liste partielle)
|
| 47 |
+
VALID_NODE_TYPES = {
|
| 48 |
+
# Triggers
|
| 49 |
+
"n8n-nodes-base.webhookTrigger",
|
| 50 |
+
"n8n-nodes-base.scheduleTrigger",
|
| 51 |
+
"n8n-nodes-base.manualTrigger",
|
| 52 |
+
"n8n-nodes-base.emailTrigger",
|
| 53 |
+
# Actions
|
| 54 |
+
"n8n-nodes-base.httpRequest",
|
| 55 |
+
"n8n-nodes-base.set",
|
| 56 |
+
"n8n-nodes-base.if",
|
| 57 |
+
"n8n-nodes-base.switch",
|
| 58 |
+
"n8n-nodes-base.merge",
|
| 59 |
+
"n8n-nodes-base.splitInBatches",
|
| 60 |
+
"n8n-nodes-base.function",
|
| 61 |
+
"n8n-nodes-base.code",
|
| 62 |
+
"n8n-nodes-base.noOp",
|
| 63 |
+
# Intégrations
|
| 64 |
+
"n8n-nodes-base.slack",
|
| 65 |
+
"n8n-nodes-base.gmail",
|
| 66 |
+
"n8n-nodes-base.googleSheets",
|
| 67 |
+
"n8n-nodes-base.airtable",
|
| 68 |
+
"n8n-nodes-base.notion",
|
| 69 |
+
"n8n-nodes-base.discord",
|
| 70 |
+
"n8n-nodes-base.telegram",
|
| 71 |
+
"n8n-nodes-base.openAi",
|
| 72 |
+
"n8n-nodes-base.postgres",
|
| 73 |
+
"n8n-nodes-base.mysql",
|
| 74 |
+
"n8n-nodes-base.mongodb",
|
| 75 |
+
# AI
|
| 76 |
+
"@n8n/n8n-nodes-langchain.agent",
|
| 77 |
+
"@n8n/n8n-nodes-langchain.chainLlm",
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
# ============================================================================
|
| 81 |
+
# MÉTRIQUES
|
| 82 |
+
# ============================================================================
|
| 83 |
+
|
| 84 |
+
@dataclass
|
| 85 |
+
class EvalResult:
|
| 86 |
+
"""Résultat d'évaluation pour un exemple"""
|
| 87 |
+
task_type: str
|
| 88 |
+
valid_json: bool
|
| 89 |
+
has_nodes: bool
|
| 90 |
+
has_connections: bool
|
| 91 |
+
nodes_valid: bool
|
| 92 |
+
has_thinking: bool
|
| 93 |
+
thinking_structured: bool
|
| 94 |
+
error: str = ""
|
| 95 |
+
|
| 96 |
+
@property
|
| 97 |
+
def score(self) -> float:
|
| 98 |
+
"""Score global 0-1"""
|
| 99 |
+
scores = [
|
| 100 |
+
self.valid_json,
|
| 101 |
+
self.has_nodes,
|
| 102 |
+
self.has_connections,
|
| 103 |
+
self.nodes_valid,
|
| 104 |
+
self.has_thinking,
|
| 105 |
+
self.thinking_structured,
|
| 106 |
+
]
|
| 107 |
+
return sum(scores) / len(scores)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def extract_workflow_json(text: str) -> Tuple[str, str]:
|
| 111 |
+
"""
|
| 112 |
+
Extrait le JSON du workflow et le thinking de la réponse.
|
| 113 |
+
Retourne (thinking, workflow_json)
|
| 114 |
+
"""
|
| 115 |
+
thinking = ""
|
| 116 |
+
workflow_json = ""
|
| 117 |
+
|
| 118 |
+
# Extraire le thinking
|
| 119 |
+
thinking_match = re.search(r'<thinking>(.*?)</thinking>', text, re.DOTALL)
|
| 120 |
+
if thinking_match:
|
| 121 |
+
thinking = thinking_match.group(1).strip()
|
| 122 |
+
|
| 123 |
+
# Extraire le JSON (après le thinking ou dans un bloc code)
|
| 124 |
+
# Méthode 1: Bloc code JSON
|
| 125 |
+
json_block = re.search(r'```json\s*(.*?)\s*```', text, re.DOTALL)
|
| 126 |
+
if json_block:
|
| 127 |
+
workflow_json = json_block.group(1).strip()
|
| 128 |
+
else:
|
| 129 |
+
# Méthode 2: JSON brut après le thinking
|
| 130 |
+
after_thinking = text
|
| 131 |
+
if thinking_match:
|
| 132 |
+
after_thinking = text[thinking_match.end():]
|
| 133 |
+
|
| 134 |
+
# Chercher un objet JSON
|
| 135 |
+
json_match = re.search(r'\{[\s\S]*\}', after_thinking)
|
| 136 |
+
if json_match:
|
| 137 |
+
workflow_json = json_match.group(0).strip()
|
| 138 |
+
|
| 139 |
+
return thinking, workflow_json
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def validate_workflow(workflow_json: str) -> Dict[str, Any]:
|
| 143 |
+
"""Valide un workflow n8n"""
|
| 144 |
+
result = {
|
| 145 |
+
"valid_json": False,
|
| 146 |
+
"has_nodes": False,
|
| 147 |
+
"has_connections": False,
|
| 148 |
+
"nodes_valid": False,
|
| 149 |
+
"node_count": 0,
|
| 150 |
+
"connection_count": 0,
|
| 151 |
+
"invalid_nodes": [],
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
# Test JSON valide
|
| 155 |
+
try:
|
| 156 |
+
wf = json.loads(workflow_json)
|
| 157 |
+
result["valid_json"] = True
|
| 158 |
+
except json.JSONDecodeError as e:
|
| 159 |
+
result["error"] = str(e)
|
| 160 |
+
return result
|
| 161 |
+
|
| 162 |
+
# Test nodes présents
|
| 163 |
+
nodes = wf.get("nodes", [])
|
| 164 |
+
result["has_nodes"] = len(nodes) > 0
|
| 165 |
+
result["node_count"] = len(nodes)
|
| 166 |
+
|
| 167 |
+
# Test connexions présentes
|
| 168 |
+
connections = wf.get("connections", {})
|
| 169 |
+
result["has_connections"] = len(connections) > 0
|
| 170 |
+
result["connection_count"] = sum(len(v) for v in connections.values())
|
| 171 |
+
|
| 172 |
+
# Test types de nodes valides
|
| 173 |
+
invalid_nodes = []
|
| 174 |
+
for node in nodes:
|
| 175 |
+
node_type = node.get("type", "")
|
| 176 |
+
if node_type and node_type not in VALID_NODE_TYPES:
|
| 177 |
+
# Accepter les types qui ressemblent à des nodes n8n
|
| 178 |
+
if not (node_type.startswith("n8n-nodes-base.") or
|
| 179 |
+
node_type.startswith("@n8n/")):
|
| 180 |
+
invalid_nodes.append(node_type)
|
| 181 |
+
|
| 182 |
+
result["invalid_nodes"] = invalid_nodes
|
| 183 |
+
result["nodes_valid"] = len(invalid_nodes) == 0
|
| 184 |
+
|
| 185 |
+
return result
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def validate_thinking(thinking: str) -> Dict[str, bool]:
|
| 189 |
+
"""Valide la qualité du thinking"""
|
| 190 |
+
result = {
|
| 191 |
+
"has_thinking": len(thinking) > 50, # Au moins 50 caractères
|
| 192 |
+
"thinking_structured": False,
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
# Vérifier si le thinking est structuré (contient des points numérotés ou tirets)
|
| 196 |
+
if thinking:
|
| 197 |
+
has_structure = (
|
| 198 |
+
re.search(r'\d+\.', thinking) is not None or # Points numérotés
|
| 199 |
+
re.search(r'^-\s', thinking, re.MULTILINE) is not None or # Tirets
|
| 200 |
+
re.search(r'^\*\s', thinking, re.MULTILINE) is not None or # Étoiles
|
| 201 |
+
"étape" in thinking.lower() or
|
| 202 |
+
"step" in thinking.lower()
|
| 203 |
+
)
|
| 204 |
+
result["thinking_structured"] = has_structure
|
| 205 |
+
|
| 206 |
+
return result
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def evaluate_example(
|
| 210 |
+
model_output: str,
|
| 211 |
+
task_type: str,
|
| 212 |
+
) -> EvalResult:
|
| 213 |
+
"""Évalue un exemple généré par le modèle"""
|
| 214 |
+
# Extraire thinking et JSON
|
| 215 |
+
thinking, workflow_json = extract_workflow_json(model_output)
|
| 216 |
+
|
| 217 |
+
# Valider le workflow
|
| 218 |
+
wf_validation = validate_workflow(workflow_json)
|
| 219 |
+
|
| 220 |
+
# Valider le thinking
|
| 221 |
+
thinking_validation = validate_thinking(thinking)
|
| 222 |
+
|
| 223 |
+
return EvalResult(
|
| 224 |
+
task_type=task_type,
|
| 225 |
+
valid_json=wf_validation["valid_json"],
|
| 226 |
+
has_nodes=wf_validation["has_nodes"],
|
| 227 |
+
has_connections=wf_validation["has_connections"],
|
| 228 |
+
nodes_valid=wf_validation["nodes_valid"],
|
| 229 |
+
has_thinking=thinking_validation["has_thinking"],
|
| 230 |
+
thinking_structured=thinking_validation["thinking_structured"],
|
| 231 |
+
error=wf_validation.get("error", ""),
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# ============================================================================
|
| 236 |
+
# ÉVALUATION
|
| 237 |
+
# ============================================================================
|
| 238 |
+
|
| 239 |
+
def run_evaluation(
|
| 240 |
+
model_path: str,
|
| 241 |
+
dataset_repo: str = "stmasson/n8n-agentic-multitask",
|
| 242 |
+
data_file: str = "data/multitask_large/val.jsonl",
|
| 243 |
+
num_samples: int = 100,
|
| 244 |
+
output_file: str = "eval_results.json",
|
| 245 |
+
):
|
| 246 |
+
"""Lance l'évaluation complète du modèle"""
|
| 247 |
+
|
| 248 |
+
print("=" * 60)
|
| 249 |
+
print("ÉVALUATION DU MODÈLE N8N EXPERT")
|
| 250 |
+
print("=" * 60)
|
| 251 |
+
|
| 252 |
+
# Auth
|
| 253 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 254 |
+
if hf_token:
|
| 255 |
+
login(token=hf_token)
|
| 256 |
+
|
| 257 |
+
# Charger le modèle
|
| 258 |
+
print(f"\nChargement du modèle: {model_path}")
|
| 259 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 260 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 261 |
+
model_path,
|
| 262 |
+
torch_dtype=torch.bfloat16,
|
| 263 |
+
device_map="auto",
|
| 264 |
+
trust_remote_code=True,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
pipe = pipeline(
|
| 268 |
+
"text-generation",
|
| 269 |
+
model=model,
|
| 270 |
+
tokenizer=tokenizer,
|
| 271 |
+
device_map="auto",
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# Charger le dataset
|
| 275 |
+
print(f"\nChargement du dataset: {dataset_repo}")
|
| 276 |
+
dataset = load_dataset(
|
| 277 |
+
dataset_repo,
|
| 278 |
+
data_files={"validation": data_file},
|
| 279 |
+
split="validation"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# Échantillonner
|
| 283 |
+
if num_samples < len(dataset):
|
| 284 |
+
dataset = dataset.shuffle(seed=42).select(range(num_samples))
|
| 285 |
+
|
| 286 |
+
print(f"Évaluation sur {len(dataset)} exemples")
|
| 287 |
+
|
| 288 |
+
# Évaluer
|
| 289 |
+
results = []
|
| 290 |
+
task_counts = {}
|
| 291 |
+
|
| 292 |
+
for example in tqdm(dataset, desc="Évaluation"):
|
| 293 |
+
messages = example["messages"]
|
| 294 |
+
|
| 295 |
+
# Déterminer le type de tâche
|
| 296 |
+
system_msg = messages[0]["content"] if messages else ""
|
| 297 |
+
if "génère" in system_msg.lower() or "generate" in system_msg.lower():
|
| 298 |
+
task_type = "generate"
|
| 299 |
+
elif "édite" in system_msg.lower() or "edit" in system_msg.lower():
|
| 300 |
+
task_type = "edit"
|
| 301 |
+
elif "corrige" in system_msg.lower() or "fix" in system_msg.lower():
|
| 302 |
+
task_type = "fix"
|
| 303 |
+
elif "améliore" in system_msg.lower() or "improve" in system_msg.lower():
|
| 304 |
+
task_type = "improve"
|
| 305 |
+
elif "explique" in system_msg.lower() or "explain" in system_msg.lower():
|
| 306 |
+
task_type = "explain"
|
| 307 |
+
elif "débogue" in system_msg.lower() or "debug" in system_msg.lower():
|
| 308 |
+
task_type = "debug"
|
| 309 |
+
else:
|
| 310 |
+
task_type = "unknown"
|
| 311 |
+
|
| 312 |
+
task_counts[task_type] = task_counts.get(task_type, 0) + 1
|
| 313 |
+
|
| 314 |
+
# Construire le prompt
|
| 315 |
+
prompt = tokenizer.apply_chat_template(
|
| 316 |
+
messages[:-1], # Exclure la réponse attendue
|
| 317 |
+
tokenize=False,
|
| 318 |
+
add_generation_prompt=True,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
# Générer
|
| 322 |
+
try:
|
| 323 |
+
output = pipe(
|
| 324 |
+
prompt,
|
| 325 |
+
max_new_tokens=4096,
|
| 326 |
+
do_sample=False,
|
| 327 |
+
temperature=None,
|
| 328 |
+
top_p=None,
|
| 329 |
+
return_full_text=False,
|
| 330 |
+
)
|
| 331 |
+
generated = output[0]["generated_text"]
|
| 332 |
+
except Exception as e:
|
| 333 |
+
generated = f"ERROR: {str(e)}"
|
| 334 |
+
|
| 335 |
+
# Évaluer
|
| 336 |
+
eval_result = evaluate_example(generated, task_type)
|
| 337 |
+
results.append(eval_result)
|
| 338 |
+
|
| 339 |
+
# Calculer les statistiques
|
| 340 |
+
print("\n" + "=" * 60)
|
| 341 |
+
print("RÉSULTATS")
|
| 342 |
+
print("=" * 60)
|
| 343 |
+
|
| 344 |
+
total = len(results)
|
| 345 |
+
|
| 346 |
+
# Métriques globales
|
| 347 |
+
metrics = {
|
| 348 |
+
"valid_json": sum(r.valid_json for r in results) / total,
|
| 349 |
+
"has_nodes": sum(r.has_nodes for r in results) / total,
|
| 350 |
+
"has_connections": sum(r.has_connections for r in results) / total,
|
| 351 |
+
"nodes_valid": sum(r.nodes_valid for r in results) / total,
|
| 352 |
+
"has_thinking": sum(r.has_thinking for r in results) / total,
|
| 353 |
+
"thinking_structured": sum(r.thinking_structured for r in results) / total,
|
| 354 |
+
"overall_score": sum(r.score for r in results) / total,
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
print("\nMétriques globales:")
|
| 358 |
+
for metric, value in metrics.items():
|
| 359 |
+
print(f" {metric}: {value:.1%}")
|
| 360 |
+
|
| 361 |
+
# Métriques par tâche
|
| 362 |
+
print("\nMétriques par tâche:")
|
| 363 |
+
for task_type in sorted(task_counts.keys()):
|
| 364 |
+
task_results = [r for r in results if r.task_type == task_type]
|
| 365 |
+
if task_results:
|
| 366 |
+
task_score = sum(r.score for r in task_results) / len(task_results)
|
| 367 |
+
task_json = sum(r.valid_json for r in task_results) / len(task_results)
|
| 368 |
+
print(f" {task_type}: score={task_score:.1%}, json={task_json:.1%} (n={len(task_results)})")
|
| 369 |
+
|
| 370 |
+
# Sauvegarder les résultats
|
| 371 |
+
output = {
|
| 372 |
+
"model": model_path,
|
| 373 |
+
"num_samples": total,
|
| 374 |
+
"metrics": metrics,
|
| 375 |
+
"by_task": {
|
| 376 |
+
task: {
|
| 377 |
+
"count": len([r for r in results if r.task_type == task]),
|
| 378 |
+
"score": sum(r.score for r in results if r.task_type == task) /
|
| 379 |
+
max(1, len([r for r in results if r.task_type == task])),
|
| 380 |
+
}
|
| 381 |
+
for task in task_counts.keys()
|
| 382 |
+
},
|
| 383 |
+
}
|
| 384 |
+
|
| 385 |
+
with open(output_file, "w") as f:
|
| 386 |
+
json.dump(output, f, indent=2)
|
| 387 |
+
|
| 388 |
+
print(f"\nRésultats sauvegardés dans: {output_file}")
|
| 389 |
+
|
| 390 |
+
return metrics
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
# ============================================================================
|
| 394 |
+
# MAIN
|
| 395 |
+
# ============================================================================
|
| 396 |
+
|
| 397 |
+
if __name__ == "__main__":
|
| 398 |
+
parser = argparse.ArgumentParser(description="Évaluation du modèle n8n Expert")
|
| 399 |
+
parser.add_argument("--model", type=str, required=True, help="Chemin du modèle à évaluer")
|
| 400 |
+
parser.add_argument("--samples", type=int, default=100, help="Nombre d'exemples à évaluer")
|
| 401 |
+
parser.add_argument("--output", type=str, default="eval_results.json", help="Fichier de sortie")
|
| 402 |
+
|
| 403 |
+
args = parser.parse_args()
|
| 404 |
+
|
| 405 |
+
run_evaluation(
|
| 406 |
+
model_path=args.model,
|
| 407 |
+
num_samples=args.samples,
|
| 408 |
+
output_file=args.output,
|
| 409 |
+
)
|