File size: 11,751 Bytes
5284c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
PretrainedConfig,
PreTrainedModel
)
from transformers.utils import logging
from transformers.modeling_outputs import CausalLMOutputWithPast
from .build_vit import build_projector, create_clip_vit
from .rantselector import build_adapter
logging.set_verbosity_info() # Turn on this for debug mode
logger = logging.get_logger(__name__)
DTYPE_MAPPING = {
"float16": torch.float16,
"fp16": torch.float16,
"bf16": torch.bfloat16,
"bfloat16": torch.bfloat16,
"float": torch.float32,
"fp32": torch.float32,
}
# image level
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
# video level
VIDEO_TOKEN_INDEX = -201
DEFAULT_VIDEO_TOKEN = "<video>"
class ElysiumConfig(PretrainedConfig):
model_type = "elysium"
_auto_class = "AutoConfig"
def __init__(
self,
use_flash_attention: bool = False,
gradient_checkpointing_enable: bool = False,
torch_dtype: str = "bf16",
llm_config: Dict = None,
visual_config: Dict = None,
adapter_config: Dict = None,
projector_config: Dict = None,
**kwargs,
):
self.use_flash_attention = use_flash_attention
self.gradient_checkpointing_enable = gradient_checkpointing_enable
self.torch_dtype = torch_dtype
self.llm_config = llm_config
self.visual_config = visual_config
self.adapter_config = adapter_config
self.projector_config = projector_config
super().__init__(**kwargs)
class ElysiumForCausalLM(PreTrainedModel):
_auto_class = 'AutoModelForCausalLM'
supports_gradient_checkpointing = True
def __init__(self, config: PretrainedConfig = ElysiumConfig()):
super().__init__(config)
# setup llm
self.flash_attn_monkey_patch()
self._setup_llm()
self._setup_visual_encoder()
self._setup_adapter()
self._setup_projector()
if self.config.torch_dtype:
logger.info(f"Converting model to {DTYPE_MAPPING[self.torch_dtype]}.")
self.to(DTYPE_MAPPING[self.torch_dtype])
logger.info("Done.")
if self.config.gradient_checkpointing_enable:
self._enable_gradient_checkpointing()
def flash_attn_monkey_patch(self):
if self.config.use_flash_attention:
# use flash attention
from .llama_flash_attn_monkey_patch import (
replace_llama_attn_with_flash_attn,
)
logger.info("Flash attention is availiable, patching.")
replace_llama_attn_with_flash_attn()
def _setup_visual_encoder(self):
self.visual_encoder = create_clip_vit(**self.config.visual_config)
if self.config.visual_config["freeze_vit"]:
for _, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = lambda self, mode=True: self
logger.info("freeze vision encoder")
def _setup_llm(self):
# text encoder & load pretrained model
self.tokenizer = AutoTokenizer.from_pretrained(self.config.llm_config["pretrained_model_name_or_path"])
self.llm = AutoModelForCausalLM.from_pretrained(self.config.llm_config["pretrained_model_name_or_path"])
# freeze llm if needed
if self.config.llm_config["freeze_llm"]:
for _, param in self.llm.named_parameters():
param.requires_grad = False
logger.info("freeze llm")
if hasattr(self.llm.config, "hidden_size"):
self.config.hidden_size = self.llm.config.hidden_size
if hasattr(self.llm.config, "hidden_sizes"):
self.config.hidden_sizes = self.llm.config.hidden_sizes
def _setup_adapter(self):
self.adapter = build_adapter(self.config.adapter_config)
if self.config.adapter_config["freeze_adapter"]:
for _, param in self.adapter.named_parameters():
param.requires_grad = False
self.adapter = self.adapter.eval()
self.adapter.train = lambda self, mode=True: self
logger.info("freeze adapter")
def _setup_projector(self):
self.llm_proj = build_projector(
output_hidden_size=self.llm.config.hidden_size,
input_hidden_size=self.adapter.hidden_size,
**self.config.projector_config,
)
def _encode_vision(self, images, n_frames):
image_embeds = self.visual_encoder(images)
adapter_out = self.adapter(image_embeds, n_frames=n_frames)
vision_embeds = [self.llm_proj(feature) for feature in adapter_out]
attention_mask = [
torch.ones(feature.size()[:-1], dtype=torch.long).to(feature.device) for feature in vision_embeds]
vision_targets = [
torch.ones(feature.size(), dtype=torch.long).to(feature.device).fill_(-100) for feature in attention_mask]
return vision_embeds, attention_mask, vision_targets
def _concat_embedding(self, vision_encode_out, input_ids, attention_mask, labels=None, left_padding=False):
""" concat vision and text
"""
vision_embeds, vision_atts, vision_targets = vision_encode_out
input_embeds = []
attention_masks = []
targets = []
for cur_batch_idx, cur_input_ids in enumerate(input_ids):
cur_vision_embeds = vision_embeds[cur_batch_idx]
cur_vision_attn = vision_atts[cur_batch_idx]
cur_vision_targets = vision_targets[cur_batch_idx]
cur_attn_masks = attention_mask[cur_batch_idx]
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
cur_image_num = len(image_token_indices)
image_token_indices = list(image_token_indices) + [cur_input_ids.shape[0]]
cur_input_embeds = []
cur_attention_mask = []
cur_target = []
# convert text before 1st <image> to embedding
image_token_index = image_token_indices[0]
cur_input_embeds.append(
self.llm.get_input_embeddings()(cur_input_ids[:image_token_index]),
)
cur_attention_mask.append(
cur_attn_masks[:image_token_index],
)
if labels is not None:
cur_target.append(labels[cur_batch_idx, :image_token_index])
assert cur_image_num == len(cur_vision_embeds), \
f"Size mismatch! cur_image_num: {cur_image_num}, len(cur_vision_embeds): {len(cur_vision_embeds)}"
# convert each <image> xxx group into embedding
for i in range(0, cur_image_num):
image_token_index = image_token_indices[i]
cur_input_embeds.append(torch.cat([
cur_vision_embeds[i],
self.llm.get_input_embeddings()(cur_input_ids[image_token_index+1:image_token_indices[i+1]])
]))
cur_attention_mask.append(torch.cat([
cur_vision_attn[i],
cur_attn_masks[image_token_index+1:image_token_indices[i+1]]
]))
if labels is not None:
cur_target.append(torch.cat([
cur_vision_targets[i],
labels[cur_batch_idx, image_token_index+1:image_token_indices[i+1]],
]))
input_embeds.append(torch.cat(cur_input_embeds))
attention_masks.append(torch.cat(cur_attention_mask))
if labels is not None:
targets.append(torch.cat(cur_target))
# padding
n_tokens = [embed.shape[0] for embed in input_embeds]
max_token = max(n_tokens)
for i in range(len(input_embeds)):
if max_token > n_tokens[i]:
self.pad_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
pad_token = torch.tensor([self.pad_id] * (max_token - n_tokens[i]))
pad_embedding = self.llm.get_input_embeddings()(pad_token.to(vision_embeds[i].device))
pad_attention = torch.zeros(pad_embedding.shape[0], dtype=torch.long).to(vision_embeds[i].device)
pad_targets = torch.ones(pad_attention.size(), dtype=torch.long).to(vision_embeds[i].device).fill_(-100)
if left_padding:
input_embeds[i] = torch.cat([pad_embedding, input_embeds[i]])
attention_masks[i] = torch.cat([pad_attention, attention_masks[i]])
if labels is not None:
targets[i] = torch.cat([pad_targets, targets[i]])
else:
input_embeds[i] = torch.cat([input_embeds[i], pad_embedding])
attention_masks[i] = torch.cat([attention_masks[i], pad_attention])
if labels is not None:
targets[i] = torch.cat([targets[i], pad_targets])
inputs_embeds = torch.stack(input_embeds, dim=0).type(self.llm.dtype)
attention_masks = torch.stack(attention_masks, dim=0)
if len(targets) > 0:
targets = torch.stack(targets, dim=0)
return inputs_embeds, attention_masks, targets
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
frames: torch.LongTensor = None,
n_frames: List[int] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
# get vision features
vision_encode_out = self._encode_vision(frames, n_frames)
inputs_embeds, attention_mask, targets = self._concat_embedding(
vision_encode_out, input_ids, attention_mask, labels)
# input to llm
outputs = self.llm(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=targets,
return_dict=True,
)
return outputs
def _enable_gradient_checkpointing(self):
for model in (self.visual_encoder, self.llm):
if hasattr(model, "gradient_checkpointing_enable"):
model.gradient_checkpointing_enable()
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
def generate(self,
frames: torch.Tensor,
n_frames: List[int],
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
**kwargs):
with torch.cuda.amp.autocast(
enabled=(self.device != torch.device("cpu"))
):
vision_encode_out = self._encode_vision(frames, n_frames)
inputs_embeds, attention_mask, _ = self._concat_embedding(
vision_encode_out, input_ids, attention_mask)
outputs = self.llm.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
eos_token_id=self.tokenizer.eos_token_id,
**kwargs
)
# parse result text
output_text = self.tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
return output_text
|