Upload Train_model.ipynb
Browse files- Train_model.ipynb +327 -0
Train_model.ipynb
ADDED
|
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "3ca08817",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"# !pip install seqeval"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": null,
|
| 16 |
+
"id": "c5958200",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"# import torch\n",
|
| 21 |
+
"# torch.cuda.is_available(), torch.cuda.device_count()"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": null,
|
| 27 |
+
"id": "590c3f48",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"import warnings\n",
|
| 32 |
+
"warnings.filterwarnings('ignore')\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"import pickle\n",
|
| 35 |
+
"import numpy as np\n",
|
| 36 |
+
"import transformers\n",
|
| 37 |
+
"from transformers import Trainer\n",
|
| 38 |
+
"from datasets import load_metric\n",
|
| 39 |
+
"from datasets import load_dataset\n",
|
| 40 |
+
"from transformers import AutoTokenizer\n",
|
| 41 |
+
"from transformers import TrainingArguments\n",
|
| 42 |
+
"from transformers import AutoModelForTokenClassification\n",
|
| 43 |
+
"from transformers import DataCollatorForTokenClassification"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "markdown",
|
| 48 |
+
"id": "44d7c35c",
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"source": [
|
| 51 |
+
"## Helpful funcs "
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": null,
|
| 57 |
+
"id": "5c9e36d9",
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"outputs": [],
|
| 60 |
+
"source": [
|
| 61 |
+
"def align_labels_with_tokens(labels, word_ids):\n",
|
| 62 |
+
" return [-100 if i is None else labels[i] for i in word_ids]\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"def tokenize_and_align_labels(examples):\n",
|
| 65 |
+
" tokenized_inputs = tokenizer(\n",
|
| 66 |
+
" examples[\"sequences\"], truncation=True, is_split_into_words=True\n",
|
| 67 |
+
" )\n",
|
| 68 |
+
" all_labels = examples[\"ids\"]\n",
|
| 69 |
+
" new_labels = []\n",
|
| 70 |
+
" for i, labels in enumerate(all_labels):\n",
|
| 71 |
+
" word_ids = tokenized_inputs.word_ids(i)\n",
|
| 72 |
+
" new_labels.append(align_labels_with_tokens(labels, word_ids))\n",
|
| 73 |
+
"\n",
|
| 74 |
+
" tokenized_inputs[\"labels\"] = new_labels\n",
|
| 75 |
+
" return tokenized_inputs\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"def compute_metrics(eval_preds):\n",
|
| 78 |
+
" logits, labels = eval_preds\n",
|
| 79 |
+
" predictions = np.argmax(logits, axis=-1)\n",
|
| 80 |
+
"\n",
|
| 81 |
+
" # Remove ignored index (special tokens) and convert to labels\n",
|
| 82 |
+
" true_labels = [[label_names[l] for l in label if l != -100] for label in labels]\n",
|
| 83 |
+
" true_predictions = [\n",
|
| 84 |
+
" [label_names[p] for (p, l) in zip(prediction, label) if l != -100]\n",
|
| 85 |
+
" for prediction, label in zip(predictions, labels)\n",
|
| 86 |
+
" ]\n",
|
| 87 |
+
" all_metrics = metric.compute(predictions=true_predictions, references=true_labels)\n",
|
| 88 |
+
" return {\n",
|
| 89 |
+
" \"precision\": all_metrics[\"overall_precision\"],\n",
|
| 90 |
+
" \"recall\": all_metrics[\"overall_recall\"],\n",
|
| 91 |
+
" \"f1\": all_metrics[\"overall_f1\"],\n",
|
| 92 |
+
" \"accuracy\": all_metrics[\"overall_accuracy\"],\n",
|
| 93 |
+
" }"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "markdown",
|
| 98 |
+
"id": "8760e709",
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"source": [
|
| 101 |
+
"## Load Data"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"execution_count": null,
|
| 107 |
+
"id": "e8c723f7",
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"outputs": [],
|
| 110 |
+
"source": [
|
| 111 |
+
"raw_datasets = load_dataset(\"surdan/nerel_short\")"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "code",
|
| 116 |
+
"execution_count": null,
|
| 117 |
+
"id": "e540a898",
|
| 118 |
+
"metadata": {},
|
| 119 |
+
"outputs": [],
|
| 120 |
+
"source": [
|
| 121 |
+
"raw_datasets"
|
| 122 |
+
]
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"cell_type": "markdown",
|
| 126 |
+
"id": "5a4947d1",
|
| 127 |
+
"metadata": {},
|
| 128 |
+
"source": [
|
| 129 |
+
"## Preprocess data"
|
| 130 |
+
]
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"cell_type": "code",
|
| 134 |
+
"execution_count": null,
|
| 135 |
+
"id": "8829557e",
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"outputs": [],
|
| 138 |
+
"source": [
|
| 139 |
+
"model_checkpoint = \"cointegrated/LaBSE-en-ru\""
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"id": "b6c13ad1",
|
| 146 |
+
"metadata": {},
|
| 147 |
+
"outputs": [],
|
| 148 |
+
"source": [
|
| 149 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": null,
|
| 155 |
+
"id": "ea2c1a9e",
|
| 156 |
+
"metadata": {},
|
| 157 |
+
"outputs": [],
|
| 158 |
+
"source": [
|
| 159 |
+
"tokenized_datasets = raw_datasets.map(\n",
|
| 160 |
+
" tokenize_and_align_labels,\n",
|
| 161 |
+
" batched=True,\n",
|
| 162 |
+
" remove_columns=raw_datasets[\"train\"].column_names,\n",
|
| 163 |
+
")"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"cell_type": "markdown",
|
| 168 |
+
"id": "e9b5b9b1",
|
| 169 |
+
"metadata": {},
|
| 170 |
+
"source": [
|
| 171 |
+
"## Init Training pipeline"
|
| 172 |
+
]
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"cell_type": "code",
|
| 176 |
+
"execution_count": null,
|
| 177 |
+
"id": "b24d86e3",
|
| 178 |
+
"metadata": {},
|
| 179 |
+
"outputs": [],
|
| 180 |
+
"source": [
|
| 181 |
+
"with open('id_to_label_map.pickle', 'rb') as f:\n",
|
| 182 |
+
" map_id_to_label = pickle.load(f)"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": null,
|
| 188 |
+
"id": "1d90a6d9",
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"outputs": [],
|
| 191 |
+
"source": [
|
| 192 |
+
"data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "code",
|
| 197 |
+
"execution_count": null,
|
| 198 |
+
"id": "3d890df2",
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"id2label = {str(k): v for k, v in map_id_to_label.items()}\n",
|
| 203 |
+
"label2id = {v: k for k, v in id2label.items()}\n",
|
| 204 |
+
"label_names = list(id2label.values())"
|
| 205 |
+
]
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"cell_type": "code",
|
| 209 |
+
"execution_count": null,
|
| 210 |
+
"id": "31bcfd6c",
|
| 211 |
+
"metadata": {},
|
| 212 |
+
"outputs": [],
|
| 213 |
+
"source": [
|
| 214 |
+
"model = AutoModelForTokenClassification.from_pretrained(\n",
|
| 215 |
+
" model_checkpoint,\n",
|
| 216 |
+
" id2label=id2label,\n",
|
| 217 |
+
" label2id=label2id,\n",
|
| 218 |
+
")"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
+
"id": "84497580",
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [],
|
| 227 |
+
"source": [
|
| 228 |
+
"model.config.num_labels"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": null,
|
| 234 |
+
"id": "1ccfbf74",
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"outputs": [],
|
| 237 |
+
"source": [
|
| 238 |
+
"args = TrainingArguments(\n",
|
| 239 |
+
" \"LaBSE_ner_nerel\",\n",
|
| 240 |
+
" evaluation_strategy=\"epoch\",\n",
|
| 241 |
+
" save_strategy=\"no\",\n",
|
| 242 |
+
" learning_rate=2e-5,\n",
|
| 243 |
+
" num_train_epochs=25,\n",
|
| 244 |
+
" weight_decay=0.01,\n",
|
| 245 |
+
" push_to_hub=False,\n",
|
| 246 |
+
" per_device_train_batch_size = 4 ## depending on the total volume of memory of your GPU\n",
|
| 247 |
+
")"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"cell_type": "markdown",
|
| 252 |
+
"id": "c798d567",
|
| 253 |
+
"metadata": {},
|
| 254 |
+
"source": [
|
| 255 |
+
"## Train model"
|
| 256 |
+
]
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"cell_type": "code",
|
| 260 |
+
"execution_count": null,
|
| 261 |
+
"id": "1348d188",
|
| 262 |
+
"metadata": {},
|
| 263 |
+
"outputs": [],
|
| 264 |
+
"source": [
|
| 265 |
+
"metric = load_metric(\"seqeval\")"
|
| 266 |
+
]
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"cell_type": "code",
|
| 270 |
+
"execution_count": null,
|
| 271 |
+
"id": "5cff0367",
|
| 272 |
+
"metadata": {},
|
| 273 |
+
"outputs": [],
|
| 274 |
+
"source": [
|
| 275 |
+
"trainer = Trainer(\n",
|
| 276 |
+
" model=model,\n",
|
| 277 |
+
" args=args,\n",
|
| 278 |
+
" train_dataset=tokenized_datasets[\"train\"],\n",
|
| 279 |
+
" eval_dataset=tokenized_datasets[\"dev\"],\n",
|
| 280 |
+
" data_collator=data_collator,\n",
|
| 281 |
+
" compute_metrics=compute_metrics,\n",
|
| 282 |
+
" tokenizer=tokenizer,\n",
|
| 283 |
+
")\n",
|
| 284 |
+
"trainer.train()"
|
| 285 |
+
]
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"cell_type": "code",
|
| 289 |
+
"execution_count": null,
|
| 290 |
+
"id": "576a10f4",
|
| 291 |
+
"metadata": {},
|
| 292 |
+
"outputs": [],
|
| 293 |
+
"source": [
|
| 294 |
+
"trainer.save_model(\"LaBSE_nerel_last_checkpoint\")"
|
| 295 |
+
]
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"cell_type": "code",
|
| 299 |
+
"execution_count": null,
|
| 300 |
+
"id": "451d6db1",
|
| 301 |
+
"metadata": {},
|
| 302 |
+
"outputs": [],
|
| 303 |
+
"source": []
|
| 304 |
+
}
|
| 305 |
+
],
|
| 306 |
+
"metadata": {
|
| 307 |
+
"kernelspec": {
|
| 308 |
+
"display_name": "hf_env",
|
| 309 |
+
"language": "python",
|
| 310 |
+
"name": "hf_env"
|
| 311 |
+
},
|
| 312 |
+
"language_info": {
|
| 313 |
+
"codemirror_mode": {
|
| 314 |
+
"name": "ipython",
|
| 315 |
+
"version": 3
|
| 316 |
+
},
|
| 317 |
+
"file_extension": ".py",
|
| 318 |
+
"mimetype": "text/x-python",
|
| 319 |
+
"name": "python",
|
| 320 |
+
"nbconvert_exporter": "python",
|
| 321 |
+
"pygments_lexer": "ipython3",
|
| 322 |
+
"version": "3.8.10"
|
| 323 |
+
}
|
| 324 |
+
},
|
| 325 |
+
"nbformat": 4,
|
| 326 |
+
"nbformat_minor": 5
|
| 327 |
+
}
|