Delete Inference.ipynb
Browse files- Inference.ipynb +0 -208
Inference.ipynb
DELETED
|
@@ -1,208 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"id": "73f81039",
|
| 7 |
-
"metadata": {},
|
| 8 |
-
"outputs": [],
|
| 9 |
-
"source": [
|
| 10 |
-
"from transformers import pipeline\n",
|
| 11 |
-
"from termcolor import colored\n",
|
| 12 |
-
"import torch"
|
| 13 |
-
]
|
| 14 |
-
},
|
| 15 |
-
{
|
| 16 |
-
"cell_type": "code",
|
| 17 |
-
"execution_count": null,
|
| 18 |
-
"id": "b8a8891e",
|
| 19 |
-
"metadata": {},
|
| 20 |
-
"outputs": [],
|
| 21 |
-
"source": [
|
| 22 |
-
"# !pip install termcolor==1.1.0"
|
| 23 |
-
]
|
| 24 |
-
},
|
| 25 |
-
{
|
| 26 |
-
"cell_type": "code",
|
| 27 |
-
"execution_count": null,
|
| 28 |
-
"id": "44668ca1",
|
| 29 |
-
"metadata": {},
|
| 30 |
-
"outputs": [],
|
| 31 |
-
"source": [
|
| 32 |
-
"class Ner_Extractor:\n",
|
| 33 |
-
" \n",
|
| 34 |
-
" def __init__(self, model_checkpoint):\n",
|
| 35 |
-
" \n",
|
| 36 |
-
" self.token_pred_pipeline = pipeline(\"token-classification\", \n",
|
| 37 |
-
" model=model_checkpoint, \n",
|
| 38 |
-
" aggregation_strategy=\"average\")\n",
|
| 39 |
-
" \n",
|
| 40 |
-
" @staticmethod\n",
|
| 41 |
-
" def text_color(txt, txt_c=\"blue\", txt_hglt=\"on_yellow\"):\n",
|
| 42 |
-
" return colored(txt, txt_c, txt_hglt)\n",
|
| 43 |
-
" \n",
|
| 44 |
-
" @staticmethod\n",
|
| 45 |
-
" def concat_entities(ner_result):\n",
|
| 46 |
-
" \n",
|
| 47 |
-
" entities = []\n",
|
| 48 |
-
" prev_entity = None\n",
|
| 49 |
-
" prev_end = 0\n",
|
| 50 |
-
" for i in range(len(ner_result)):\n",
|
| 51 |
-
" if (ner_result[i][\"entity_group\"] == prev_entity) &\\\n",
|
| 52 |
-
" (ner_result[i][\"start\"] == prev_end):\n",
|
| 53 |
-
" entities[i-1][2] = ner_result[i][\"end\"]\n",
|
| 54 |
-
" prev_entity = ner_result[i][\"entity_group\"]\n",
|
| 55 |
-
" prev_end = ner_result[i][\"end\"]\n",
|
| 56 |
-
" else:\n",
|
| 57 |
-
" entities.append([ner_result[i][\"entity_group\"], \n",
|
| 58 |
-
" ner_result[i][\"start\"], \n",
|
| 59 |
-
" ner_result[i][\"end\"]])\n",
|
| 60 |
-
" prev_entity = ner_result[i][\"entity_group\"]\n",
|
| 61 |
-
" prev_end = ner_result[i][\"end\"]\n",
|
| 62 |
-
" \n",
|
| 63 |
-
" return entities\n",
|
| 64 |
-
" \n",
|
| 65 |
-
" \n",
|
| 66 |
-
" def colored_text(self, text, entities):\n",
|
| 67 |
-
" \n",
|
| 68 |
-
" colored_text = \"\"\n",
|
| 69 |
-
" init_pos = 0\n",
|
| 70 |
-
" for ent in entities:\n",
|
| 71 |
-
" if ent[1] > init_pos:\n",
|
| 72 |
-
" colored_text += text[init_pos: ent[1]]\n",
|
| 73 |
-
" colored_text += self.text_color(text[ent[1]: ent[2]]) + f\"({ent[0]})\"\n",
|
| 74 |
-
" init_pos = ent[2]\n",
|
| 75 |
-
" else:\n",
|
| 76 |
-
" colored_text += self.text_color(text[ent[1]: ent[2]]) + f\"({ent[0]})\"\n",
|
| 77 |
-
" init_pos = ent[2]\n",
|
| 78 |
-
" \n",
|
| 79 |
-
" return colored_text\n",
|
| 80 |
-
" \n",
|
| 81 |
-
" \n",
|
| 82 |
-
" def get_entities(self, text: str):\n",
|
| 83 |
-
" \n",
|
| 84 |
-
" entities = self.token_pred_pipeline(text)\n",
|
| 85 |
-
" concat_ent = self.concat_entities(entities)\n",
|
| 86 |
-
" \n",
|
| 87 |
-
" return concat_ent\n",
|
| 88 |
-
" \n",
|
| 89 |
-
" \n",
|
| 90 |
-
" def show_ents_on_text(self, text: str):\n",
|
| 91 |
-
" \n",
|
| 92 |
-
" entities = self.get_entities(text)\n",
|
| 93 |
-
" \n",
|
| 94 |
-
" return self.colored_text(text, entities)"
|
| 95 |
-
]
|
| 96 |
-
},
|
| 97 |
-
{
|
| 98 |
-
"cell_type": "code",
|
| 99 |
-
"execution_count": null,
|
| 100 |
-
"id": "aaa0a5bd",
|
| 101 |
-
"metadata": {},
|
| 102 |
-
"outputs": [],
|
| 103 |
-
"source": [
|
| 104 |
-
"seqs_example = [\"Из Дзюбы вышел бы отличный бразилец». Интервью Клаудиньо\",\n",
|
| 105 |
-
"\"Самый яркий бразилец «Зенита» рассказал о встрече с Пеле, страшном морозе в Самаре и любимых финтах Роналдиньо\",\n",
|
| 106 |
-
"\"Стали известны подробности нового иска РФС к УЕФА и ФИФА\",\n",
|
| 107 |
-
"\"Реванш «Баварии», голы от «Реала» с «Челси»: ставим на ЛЧ\",\n",
|
| 108 |
-
"\"Кварацхелия не вернется в «Рубин» и станет игроком «Наполи»\",\n",
|
| 109 |
-
"\"«Манчестер Сити» сделал грандиозное предложение по Холанду\",\n",
|
| 110 |
-
"\"В России хотят возродить Кубок лиги. Он проводился в 2003 году\",\n",
|
| 111 |
-
"\"Экс-игрок «Реала» находится в критическом состоянии после ДТП\",\n",
|
| 112 |
-
"\"Аршавин посмеялся над показателями Глушакова в игре с ЦСКА\",\n",
|
| 113 |
-
"\"Арьен Роббен пробежал 42-километровый марафон\"]"
|
| 114 |
-
]
|
| 115 |
-
},
|
| 116 |
-
{
|
| 117 |
-
"cell_type": "code",
|
| 118 |
-
"execution_count": null,
|
| 119 |
-
"id": "380d9824",
|
| 120 |
-
"metadata": {},
|
| 121 |
-
"outputs": [],
|
| 122 |
-
"source": [
|
| 123 |
-
"%%time\n",
|
| 124 |
-
"extractor = Ner_Extractor(model_checkpoint = \"surdan/LaBSE_ner_nerel\")"
|
| 125 |
-
]
|
| 126 |
-
},
|
| 127 |
-
{
|
| 128 |
-
"cell_type": "code",
|
| 129 |
-
"execution_count": null,
|
| 130 |
-
"id": "37ebcf51",
|
| 131 |
-
"metadata": {},
|
| 132 |
-
"outputs": [],
|
| 133 |
-
"source": [
|
| 134 |
-
"%%time\n",
|
| 135 |
-
"show_entities_in_text = (extractor.show_ents_on_text(i) for i in seqs_example)"
|
| 136 |
-
]
|
| 137 |
-
},
|
| 138 |
-
{
|
| 139 |
-
"cell_type": "code",
|
| 140 |
-
"execution_count": null,
|
| 141 |
-
"id": "e03b28c7",
|
| 142 |
-
"metadata": {},
|
| 143 |
-
"outputs": [],
|
| 144 |
-
"source": [
|
| 145 |
-
"%%time\n",
|
| 146 |
-
"l_entities = [extractor.get_entities(i) for i in seqs_example]\n",
|
| 147 |
-
"len(l_entities), len(seqs_example)"
|
| 148 |
-
]
|
| 149 |
-
},
|
| 150 |
-
{
|
| 151 |
-
"cell_type": "code",
|
| 152 |
-
"execution_count": null,
|
| 153 |
-
"id": "a2d4ae84",
|
| 154 |
-
"metadata": {},
|
| 155 |
-
"outputs": [],
|
| 156 |
-
"source": [
|
| 157 |
-
"for i in range(len(seqs_example)):\n",
|
| 158 |
-
" print(next(show_entities_in_text, \"End of generator\"))\n",
|
| 159 |
-
" print(\"-*-\"*25)"
|
| 160 |
-
]
|
| 161 |
-
},
|
| 162 |
-
{
|
| 163 |
-
"cell_type": "code",
|
| 164 |
-
"execution_count": null,
|
| 165 |
-
"id": "47fbcff9",
|
| 166 |
-
"metadata": {},
|
| 167 |
-
"outputs": [],
|
| 168 |
-
"source": []
|
| 169 |
-
},
|
| 170 |
-
{
|
| 171 |
-
"cell_type": "code",
|
| 172 |
-
"execution_count": null,
|
| 173 |
-
"id": "41c32b90",
|
| 174 |
-
"metadata": {},
|
| 175 |
-
"outputs": [],
|
| 176 |
-
"source": []
|
| 177 |
-
},
|
| 178 |
-
{
|
| 179 |
-
"cell_type": "code",
|
| 180 |
-
"execution_count": null,
|
| 181 |
-
"id": "07bb735e",
|
| 182 |
-
"metadata": {},
|
| 183 |
-
"outputs": [],
|
| 184 |
-
"source": []
|
| 185 |
-
}
|
| 186 |
-
],
|
| 187 |
-
"metadata": {
|
| 188 |
-
"kernelspec": {
|
| 189 |
-
"display_name": "Python 3 (ipykernel)",
|
| 190 |
-
"language": "python",
|
| 191 |
-
"name": "python3"
|
| 192 |
-
},
|
| 193 |
-
"language_info": {
|
| 194 |
-
"codemirror_mode": {
|
| 195 |
-
"name": "ipython",
|
| 196 |
-
"version": 3
|
| 197 |
-
},
|
| 198 |
-
"file_extension": ".py",
|
| 199 |
-
"mimetype": "text/x-python",
|
| 200 |
-
"name": "python",
|
| 201 |
-
"nbconvert_exporter": "python",
|
| 202 |
-
"pygments_lexer": "ipython3",
|
| 203 |
-
"version": "3.8.10"
|
| 204 |
-
}
|
| 205 |
-
},
|
| 206 |
-
"nbformat": 4,
|
| 207 |
-
"nbformat_minor": 5
|
| 208 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|