sweatSmile commited on
Commit
7439f5d
·
verified ·
1 Parent(s): c93a7be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -3
README.md CHANGED
@@ -1,3 +1,87 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/DialoGPT-medium
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ tags:
6
+ - conversational-ai
7
+ - finance
8
+ - fintech
9
+ - investment-banking
10
+ - banking
11
+ - lora
12
+ - financial-advisor
13
+ - portfolio-management
14
+ - risk-assessment
15
+ - financial-analysis
16
+ - trading
17
+ - markets
18
+ - wealth-management
19
+ - compliance
20
+ - regulatory
21
+ - client-advisory
22
+ - chatbot
23
+ - nlp
24
+ language:
25
+ - en
26
+ license: mit
27
+ datasets:
28
+ - gbharti/finance-alpaca
29
+ metrics:
30
+ - perplexity
31
+ - bleu
32
+ widget:
33
+ - text: "<|user|> What are the key risks in equity trading? <|bot|>"
34
+ example_title: "Risk Assessment Query"
35
+ - text: "<|user|> Explain portfolio diversification strategies <|bot|>"
36
+ example_title: "Investment Strategy"
37
+ - text: "<|user|> How do interest rates affect bond prices? <|bot|>"
38
+ example_title: "Market Analysis"
39
+ ---
40
+
41
+ # DialoGPT-FinTech-Investment-Banking-Assistant
42
+
43
+ Fine-tuned DialoGPT-medium for financial conversations, investment advice, and banking operations using LoRA on finance-specific dataset.
44
+
45
+ ## Overview
46
+ - **Base Model:** microsoft/DialoGPT-medium (355M parameters)
47
+ - **Fine-tuning Method:** LoRA (4-bit quantization)
48
+ - **Dataset:** Financial Alpaca dataset (2K finance samples)
49
+ - **Training:** 2 epochs with optimized hyperparameters
50
+
51
+ ## Key Features
52
+ - Financial market analysis and investment guidance
53
+ - Banking operations and regulatory compliance
54
+ - Risk assessment and portfolio management
55
+ - Conversational interface for financial queries
56
+ - Optimized for UK fintech and investment banking
57
+
58
+ ## Usage
59
+
60
+ ```python
61
+ from transformers import AutoTokenizer, AutoModelForCausalLM
62
+
63
+ model = AutoModelForCausalLM.from_pretrained("sweatSmile/DialoGPT-FinTech-Investment-Banking-Assistant")
64
+ tokenizer = AutoTokenizer.from_pretrained("sweatSmile/DialoGPT-FinTech-Investment-Banking-Assistant")
65
+
66
+ # Financial conversation example
67
+ prompt = "<|user|> What are the key risks in equity trading? <|bot|>"
68
+ inputs = tokenizer(prompt, return_tensors="pt")
69
+ outputs = model.generate(**inputs, max_new_tokens=200, pad_token_id=tokenizer.eos_token_id)
70
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
71
+ ```
72
+
73
+ ## Applications
74
+ - Investment banking client advisory
75
+ - Fintech customer support automation
76
+ - Financial education and training
77
+ - Risk management consultation
78
+ - Portfolio analysis assistance
79
+
80
+ ## Training Details
81
+ - LoRA rank: 8, alpha: 16
82
+ - 4-bit quantization with fp16 precision
83
+ - Learning rate: 2e-4 with linear scheduling
84
+ - Batch size: 4, Max length: 512 tokens
85
+ - Specialized for financial domain conversations
86
+
87
+ Built for deployment in financial services and fintech environments.