--- license: mit datasets: - takara-ai/micropajama language: - en --- Takara.ai Logo From the Frontier Research Team at takara.ai we present a linear projection model that maps Qwen embeddings to RWKV embeddings for enhanced cross-model compatibility. ## Model Details - **Input Dimensions**: 4096 (Qwen embeddings) - **Output Dimensions**: 768 (RWKV embeddings) - **Architecture**: Linear layer (no bias) - **Training**: Cosine similarity loss on L2-normalized pairs - **Dataset**: takara-ai/micropajama_embedded_concat ## Usage ### Quick Start ```python import torch from huggingface_hub import PyTorchModelHubMixin # Define the model class (copy this exactly) class QwenRwkvProjection(torch.nn.Module, PyTorchModelHubMixin, library_name="takara-ai", tags=["embedding", "projection", "qwen", "rwkv"], license="mit"): def __init__(self, din=4096, dout=768): super().__init__() self.linear = torch.nn.Linear(din, dout, bias=False) def forward(self, x): return self.linear(x) # Load from Hub model = QwenRwkvProjection.from_pretrained("takara-ai/qwen_rwkv_projection") model.eval() # Project embeddings (don't forget to normalize!) normalized_qwen_embeddings = torch.nn.functional.normalize(your_qwen_embeddings, p=2, dim=-1, eps=1e-8) projected_embeddings = model(normalized_qwen_embeddings) ``` ### Important Notes - **Dimensions**: Input must be (batch_size, 4096), output will be (batch_size, 768) - **Bias**: Model uses no bias term (trained on normalized pairs)