Commit
·
f7eb132
1
Parent(s):
1e92129
Upload 3 files
Browse files- medicalsymptoms1.ipynb +483 -0
- medicalsymptoms1.py +88 -0
- symptomssingle.csv +0 -0
medicalsymptoms1.ipynb
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 8,
|
| 20 |
+
"metadata": {
|
| 21 |
+
"colab": {
|
| 22 |
+
"base_uri": "https://localhost:8080/"
|
| 23 |
+
},
|
| 24 |
+
"id": "8xtpBxD_mHlR",
|
| 25 |
+
"outputId": "be506f46-b4cf-42a1-c98e-c3ffe66d1254"
|
| 26 |
+
},
|
| 27 |
+
"outputs": [
|
| 28 |
+
{
|
| 29 |
+
"output_type": "stream",
|
| 30 |
+
"name": "stdout",
|
| 31 |
+
"text": [
|
| 32 |
+
"Accuracy: 0.0\n",
|
| 33 |
+
"Classification Report:\n",
|
| 34 |
+
" precision recall f1-score support\n",
|
| 35 |
+
"\n",
|
| 36 |
+
" Acanthosis nigricans 0.00 0.00 0.00 0.0\n",
|
| 37 |
+
" Acariasis 0.00 0.00 0.00 0.0\n",
|
| 38 |
+
" Acne 0.00 0.00 0.00 0.0\n",
|
| 39 |
+
" Acute bronchitis 0.00 0.00 0.00 1.0\n",
|
| 40 |
+
" Acute bronchospasm 0.00 0.00 0.00 1.0\n",
|
| 41 |
+
" Acute glaucoma 0.00 0.00 0.00 1.0\n",
|
| 42 |
+
" Acute pancreatitis 0.00 0.00 0.00 0.0\n",
|
| 43 |
+
" Acute stress reaction 0.00 0.00 0.00 1.0\n",
|
| 44 |
+
" Adjustment reaction 0.00 0.00 0.00 1.0\n",
|
| 45 |
+
" Alcohol intoxication 0.00 0.00 0.00 0.0\n",
|
| 46 |
+
" Alcohol withdrawal 0.00 0.00 0.00 1.0\n",
|
| 47 |
+
" Alcoholic liver disease 0.00 0.00 0.00 0.0\n",
|
| 48 |
+
" Allergy 0.00 0.00 0.00 0.0\n",
|
| 49 |
+
" Allergy to animals 0.00 0.00 0.00 1.0\n",
|
| 50 |
+
" Anemia due to chronic kidney disease 0.00 0.00 0.00 1.0\n",
|
| 51 |
+
" Anemia of chronic disease 0.00 0.00 0.00 1.0\n",
|
| 52 |
+
" Angina 0.00 0.00 0.00 0.0\n",
|
| 53 |
+
" Ankylosing spondylitis 0.00 0.00 0.00 0.0\n",
|
| 54 |
+
" Aphakia 0.00 0.00 0.00 0.0\n",
|
| 55 |
+
" Aphthous ulcer 0.00 0.00 0.00 1.0\n",
|
| 56 |
+
" Arthritis of the hip 0.00 0.00 0.00 1.0\n",
|
| 57 |
+
" Asthma 0.00 0.00 0.00 0.0\n",
|
| 58 |
+
" Atelectasis 0.00 0.00 0.00 0.0\n",
|
| 59 |
+
" Athlete's foot 0.00 0.00 0.00 1.0\n",
|
| 60 |
+
" Atonic bladder 0.00 0.00 0.00 0.0\n",
|
| 61 |
+
" Atrial fibrillation 0.00 0.00 0.00 0.0\n",
|
| 62 |
+
" Benign vaginal discharge (leukorrhea) 0.00 0.00 0.00 0.0\n",
|
| 63 |
+
" Bipolar disorder 0.00 0.00 0.00 1.0\n",
|
| 64 |
+
" Birth trauma 0.00 0.00 0.00 0.0\n",
|
| 65 |
+
" Bladder cancer 0.00 0.00 0.00 0.0\n",
|
| 66 |
+
" Breast cancer 0.00 0.00 0.00 1.0\n",
|
| 67 |
+
" Breast cyst 0.00 0.00 0.00 0.0\n",
|
| 68 |
+
" Bursitis 0.00 0.00 0.00 1.0\n",
|
| 69 |
+
" Carbon monoxide poisoning 0.00 0.00 0.00 0.0\n",
|
| 70 |
+
" Cellulitis or abscess of mouth 0.00 0.00 0.00 1.0\n",
|
| 71 |
+
" Cervicitis 0.00 0.00 0.00 0.0\n",
|
| 72 |
+
" Chalazion 0.00 0.00 0.00 0.0\n",
|
| 73 |
+
" Cholecystitis 0.00 0.00 0.00 0.0\n",
|
| 74 |
+
" Choledocholithiasis 0.00 0.00 0.00 0.0\n",
|
| 75 |
+
" Cholesteatoma 0.00 0.00 0.00 0.0\n",
|
| 76 |
+
" Chondromalacia of the patella 0.00 0.00 0.00 0.0\n",
|
| 77 |
+
" Chronic back pain 0.00 0.00 0.00 0.0\n",
|
| 78 |
+
" Chronic glaucoma 0.00 0.00 0.00 1.0\n",
|
| 79 |
+
" Chronic kidney disease 0.00 0.00 0.00 0.0\n",
|
| 80 |
+
" Chronic obstructive pulmonary disease (COPD) 0.00 0.00 0.00 0.0\n",
|
| 81 |
+
" Chronic otitis media 0.00 0.00 0.00 1.0\n",
|
| 82 |
+
" Chronic pain disorder 0.00 0.00 0.00 1.0\n",
|
| 83 |
+
" Chronic pancreatitis 0.00 0.00 0.00 1.0\n",
|
| 84 |
+
" Chronic rheumatic fever 0.00 0.00 0.00 0.0\n",
|
| 85 |
+
" Chronic ulcer 0.00 0.00 0.00 0.0\n",
|
| 86 |
+
" Cirrhosis 0.00 0.00 0.00 1.0\n",
|
| 87 |
+
" Cold sore 0.00 0.00 0.00 0.0\n",
|
| 88 |
+
" Colorectal cancer 0.00 0.00 0.00 0.0\n",
|
| 89 |
+
" Congenital rubella 0.00 0.00 0.00 1.0\n",
|
| 90 |
+
" Conjunctivitis due to allergy 0.00 0.00 0.00 1.0\n",
|
| 91 |
+
" Coronary atherosclerosis 0.00 0.00 0.00 1.0\n",
|
| 92 |
+
" Croup 0.00 0.00 0.00 0.0\n",
|
| 93 |
+
" Crushing injury 0.00 0.00 0.00 1.0\n",
|
| 94 |
+
" Cyst of the eyelid 0.00 0.00 0.00 1.0\n",
|
| 95 |
+
" Cystic Fibrosis 0.00 0.00 0.00 1.0\n",
|
| 96 |
+
" Cytomegalovirus infection 0.00 0.00 0.00 1.0\n",
|
| 97 |
+
" De Quervain disease 0.00 0.00 0.00 1.0\n",
|
| 98 |
+
" Degenerative disc disease 0.00 0.00 0.00 1.0\n",
|
| 99 |
+
" Dengue fever 0.00 0.00 0.00 0.0\n",
|
| 100 |
+
" Depression 0.00 0.00 0.00 0.0\n",
|
| 101 |
+
" Diabetes insipidus 0.00 0.00 0.00 1.0\n",
|
| 102 |
+
" Diaper rash 0.00 0.00 0.00 0.0\n",
|
| 103 |
+
" Dislocation of the ankle 0.00 0.00 0.00 0.0\n",
|
| 104 |
+
" Dislocation of the finger 0.00 0.00 0.00 1.0\n",
|
| 105 |
+
" Dislocation of the foot 0.00 0.00 0.00 1.0\n",
|
| 106 |
+
" Dislocation of the hip 0.00 0.00 0.00 1.0\n",
|
| 107 |
+
" Dislocation of the shoulder 0.00 0.00 0.00 0.0\n",
|
| 108 |
+
" Dissociative disorder 0.00 0.00 0.00 1.0\n",
|
| 109 |
+
" Down syndrome 0.00 0.00 0.00 1.0\n",
|
| 110 |
+
" Drug abuse (cocaine) 0.00 0.00 0.00 0.0\n",
|
| 111 |
+
" Drug reaction 0.00 0.00 0.00 1.0\n",
|
| 112 |
+
" Dry eye of unknown cause 0.00 0.00 0.00 0.0\n",
|
| 113 |
+
" Dyshidrosis 0.00 0.00 0.00 1.0\n",
|
| 114 |
+
" Ear drum damage 0.00 0.00 0.00 0.0\n",
|
| 115 |
+
" Ear wax impaction 0.00 0.00 0.00 1.0\n",
|
| 116 |
+
" Emphysema 0.00 0.00 0.00 0.0\n",
|
| 117 |
+
" Empyema 0.00 0.00 0.00 1.0\n",
|
| 118 |
+
" Encephalitis 0.00 0.00 0.00 0.0\n",
|
| 119 |
+
" Endocarditis 0.00 0.00 0.00 1.0\n",
|
| 120 |
+
" Endometrial hyperplasia 0.00 0.00 0.00 1.0\n",
|
| 121 |
+
" Esophageal cancer 0.00 0.00 0.00 0.0\n",
|
| 122 |
+
" Essential tremor 0.00 0.00 0.00 1.0\n",
|
| 123 |
+
" Factitious disorder 0.00 0.00 0.00 1.0\n",
|
| 124 |
+
" Fat embolism 0.00 0.00 0.00 1.0\n",
|
| 125 |
+
" Female genitalia infection 0.00 0.00 0.00 1.0\n",
|
| 126 |
+
" Fibroadenoma 0.00 0.00 0.00 1.0\n",
|
| 127 |
+
" Fibromyalgia 0.00 0.00 0.00 0.0\n",
|
| 128 |
+
" Floaters 0.00 0.00 0.00 0.0\n",
|
| 129 |
+
" Fluid overload 0.00 0.00 0.00 1.0\n",
|
| 130 |
+
" Foreign body in the eye 0.00 0.00 0.00 0.0\n",
|
| 131 |
+
" Foreign body in the throat 0.00 0.00 0.00 0.0\n",
|
| 132 |
+
" Foreign body in the vagina 0.00 0.00 0.00 0.0\n",
|
| 133 |
+
" Fracture of the ankle 0.00 0.00 0.00 1.0\n",
|
| 134 |
+
" Fracture of the arm 0.00 0.00 0.00 1.0\n",
|
| 135 |
+
" Fracture of the finger 0.00 0.00 0.00 0.0\n",
|
| 136 |
+
" Fracture of the hand 0.00 0.00 0.00 0.0\n",
|
| 137 |
+
" Fracture of the jaw 0.00 0.00 0.00 1.0\n",
|
| 138 |
+
" Fracture of the leg 0.00 0.00 0.00 0.0\n",
|
| 139 |
+
" Fracture of the patella 0.00 0.00 0.00 1.0\n",
|
| 140 |
+
" G6PD enzyme deficiency 0.00 0.00 0.00 0.0\n",
|
| 141 |
+
" Galactorrhea of unknown cause 0.00 0.00 0.00 0.0\n",
|
| 142 |
+
" Gallstone 0.00 0.00 0.00 0.0\n",
|
| 143 |
+
" Gastritis 0.00 0.00 0.00 0.0\n",
|
| 144 |
+
" Gastroduodenal ulcer 0.00 0.00 0.00 1.0\n",
|
| 145 |
+
" Gout 0.00 0.00 0.00 0.0\n",
|
| 146 |
+
" Granuloma inguinale 0.00 0.00 0.00 0.0\n",
|
| 147 |
+
" Gynecomastia 0.00 0.00 0.00 0.0\n",
|
| 148 |
+
" Hashimoto thyroiditis 0.00 0.00 0.00 1.0\n",
|
| 149 |
+
" Head and neck cancer 0.00 0.00 0.00 1.0\n",
|
| 150 |
+
" Heart attack 0.00 0.00 0.00 1.0\n",
|
| 151 |
+
" Heart contusion 0.00 0.00 0.00 0.0\n",
|
| 152 |
+
" Heart failure 0.00 0.00 0.00 1.0\n",
|
| 153 |
+
" Hemarthrosis 0.00 0.00 0.00 1.0\n",
|
| 154 |
+
" Hematoma 0.00 0.00 0.00 1.0\n",
|
| 155 |
+
" Hemolytic anemia 0.00 0.00 0.00 1.0\n",
|
| 156 |
+
" High blood pressure 0.00 0.00 0.00 0.0\n",
|
| 157 |
+
" Hirsutism 0.00 0.00 0.00 1.0\n",
|
| 158 |
+
" Human immunodeficiency virus infection (HIV) 0.00 0.00 0.00 1.0\n",
|
| 159 |
+
" Hydatidiform mole 0.00 0.00 0.00 1.0\n",
|
| 160 |
+
" Hydrocele of the testicle 0.00 0.00 0.00 0.0\n",
|
| 161 |
+
" Hydronephrosis 0.00 0.00 0.00 1.0\n",
|
| 162 |
+
" Hyperemesis gravidarum 0.00 0.00 0.00 0.0\n",
|
| 163 |
+
" Hypergammaglobulinemia 0.00 0.00 0.00 1.0\n",
|
| 164 |
+
" Hyperkalemia 0.00 0.00 0.00 0.0\n",
|
| 165 |
+
" Hypernatremia 0.00 0.00 0.00 1.0\n",
|
| 166 |
+
"Hypertrophic obstructive cardiomyopathy (HOCM) 0.00 0.00 0.00 1.0\n",
|
| 167 |
+
" Hyponatremia 0.00 0.00 0.00 0.0\n",
|
| 168 |
+
" Impetigo 0.00 0.00 0.00 1.0\n",
|
| 169 |
+
" Indigestion 0.00 0.00 0.00 1.0\n",
|
| 170 |
+
" Infectious gastroenteritis 0.00 0.00 0.00 1.0\n",
|
| 171 |
+
" Ingrown toe nail 0.00 0.00 0.00 1.0\n",
|
| 172 |
+
" Inguinal hernia 0.00 0.00 0.00 0.0\n",
|
| 173 |
+
" Injury of the ankle 0.00 0.00 0.00 0.0\n",
|
| 174 |
+
" Injury to the abdomen 0.00 0.00 0.00 1.0\n",
|
| 175 |
+
" Injury to the finger 0.00 0.00 0.00 1.0\n",
|
| 176 |
+
" Injury to the hip 0.00 0.00 0.00 1.0\n",
|
| 177 |
+
" Injury to the knee 0.00 0.00 0.00 0.0\n",
|
| 178 |
+
" Insect bite 0.00 0.00 0.00 0.0\n",
|
| 179 |
+
" Intestinal cancer 0.00 0.00 0.00 1.0\n",
|
| 180 |
+
" Intestinal malabsorption 0.00 0.00 0.00 1.0\n",
|
| 181 |
+
" Intestinal obstruction 0.00 0.00 0.00 0.0\n",
|
| 182 |
+
" Intracranial abscess 0.00 0.00 0.00 1.0\n",
|
| 183 |
+
" Irritable bowel syndrome 0.00 0.00 0.00 0.0\n",
|
| 184 |
+
" Kaposi sarcoma 0.00 0.00 0.00 1.0\n",
|
| 185 |
+
" Kidney cancer 0.00 0.00 0.00 1.0\n",
|
| 186 |
+
" Kidney stone 0.00 0.00 0.00 1.0\n",
|
| 187 |
+
" Knee ligament or meniscus tear 0.00 0.00 0.00 1.0\n",
|
| 188 |
+
" Lactose intolerance 0.00 0.00 0.00 1.0\n",
|
| 189 |
+
" Leishmaniasis 0.00 0.00 0.00 1.0\n",
|
| 190 |
+
" Lichen planus 0.00 0.00 0.00 1.0\n",
|
| 191 |
+
" Lipoma 0.00 0.00 0.00 1.0\n",
|
| 192 |
+
" Lung cancer 0.00 0.00 0.00 1.0\n",
|
| 193 |
+
" Lymphadenitis 0.00 0.00 0.00 0.0\n",
|
| 194 |
+
" Lymphangitis 0.00 0.00 0.00 1.0\n",
|
| 195 |
+
" Lymphogranuloma venereum 0.00 0.00 0.00 1.0\n",
|
| 196 |
+
" Magnesium deficiency 0.00 0.00 0.00 1.0\n",
|
| 197 |
+
" Malignant hypertension 0.00 0.00 0.00 1.0\n",
|
| 198 |
+
" Marijuana abuse 0.00 0.00 0.00 0.0\n",
|
| 199 |
+
" Mastoiditis 0.00 0.00 0.00 1.0\n",
|
| 200 |
+
" Meckel diverticulum 0.00 0.00 0.00 0.0\n",
|
| 201 |
+
" Migraine 0.00 0.00 0.00 1.0\n",
|
| 202 |
+
" Mitral valve disease 0.00 0.00 0.00 1.0\n",
|
| 203 |
+
" Molluscum contagiosum 0.00 0.00 0.00 1.0\n",
|
| 204 |
+
" Mononucleosis 0.00 0.00 0.00 0.0\n",
|
| 205 |
+
" Moyamoya disease 0.00 0.00 0.00 0.0\n",
|
| 206 |
+
" Mucositis 0.00 0.00 0.00 0.0\n",
|
| 207 |
+
" Mumps 0.00 0.00 0.00 1.0\n",
|
| 208 |
+
" Muscle spasm 0.00 0.00 0.00 1.0\n",
|
| 209 |
+
" Narcolepsy 0.00 0.00 0.00 0.0\n",
|
| 210 |
+
" Neonatal jaundice 0.00 0.00 0.00 1.0\n",
|
| 211 |
+
" Neurosis 0.00 0.00 0.00 0.0\n",
|
| 212 |
+
" Noninfectious gastroenteritis 0.00 0.00 0.00 0.0\n",
|
| 213 |
+
" Obstructive sleep apnea (OSA) 0.00 0.00 0.00 1.0\n",
|
| 214 |
+
" Onychomycosis 0.00 0.00 0.00 0.0\n",
|
| 215 |
+
" Open wound of the cheek 0.00 0.00 0.00 1.0\n",
|
| 216 |
+
" Open wound of the finger 0.00 0.00 0.00 0.0\n",
|
| 217 |
+
" Open wound of the hand 0.00 0.00 0.00 1.0\n",
|
| 218 |
+
" Open wound of the head 0.00 0.00 0.00 1.0\n",
|
| 219 |
+
" Open wound of the hip 0.00 0.00 0.00 0.0\n",
|
| 220 |
+
" Open wound of the mouth 0.00 0.00 0.00 1.0\n",
|
| 221 |
+
" Open wound of the neck 0.00 0.00 0.00 1.0\n",
|
| 222 |
+
" Open wound of the shoulder 0.00 0.00 0.00 0.0\n",
|
| 223 |
+
" Oral leukoplakia 0.00 0.00 0.00 0.0\n",
|
| 224 |
+
" Oral mucosal lesion 0.00 0.00 0.00 0.0\n",
|
| 225 |
+
" Oral thrush (yeast infection) 0.00 0.00 0.00 1.0\n",
|
| 226 |
+
" Osteoarthritis 0.00 0.00 0.00 0.0\n",
|
| 227 |
+
" Otitis externa (swimmer's ear) 0.00 0.00 0.00 0.0\n",
|
| 228 |
+
" Pancreatic cancer 0.00 0.00 0.00 1.0\n",
|
| 229 |
+
" Panic disorder 0.00 0.00 0.00 0.0\n",
|
| 230 |
+
" Parkinson disease 0.00 0.00 0.00 0.0\n",
|
| 231 |
+
" Paronychia 0.00 0.00 0.00 0.0\n",
|
| 232 |
+
" Patau syndrome 0.00 0.00 0.00 0.0\n",
|
| 233 |
+
" Pelvic fistula 0.00 0.00 0.00 1.0\n",
|
| 234 |
+
" Pelvic organ prolapse 0.00 0.00 0.00 0.0\n",
|
| 235 |
+
" Pemphigus 0.00 0.00 0.00 0.0\n",
|
| 236 |
+
" Pericarditis 0.00 0.00 0.00 1.0\n",
|
| 237 |
+
" Perirectal infection 0.00 0.00 0.00 1.0\n",
|
| 238 |
+
" Peritonsillar abscess 0.00 0.00 0.00 1.0\n",
|
| 239 |
+
" Personality disorder 0.00 0.00 0.00 0.0\n",
|
| 240 |
+
" Phimosis 0.00 0.00 0.00 1.0\n",
|
| 241 |
+
" Pilonidal cyst 0.00 0.00 0.00 1.0\n",
|
| 242 |
+
" Placental abruption 0.00 0.00 0.00 1.0\n",
|
| 243 |
+
" Pleural effusion 0.00 0.00 0.00 1.0\n",
|
| 244 |
+
" Pneumonia 0.00 0.00 0.00 0.0\n",
|
| 245 |
+
" Pneumothorax 0.00 0.00 0.00 1.0\n",
|
| 246 |
+
" Poisoning due to analgesics 0.00 0.00 0.00 1.0\n",
|
| 247 |
+
" Poisoning due to antidepressants 0.00 0.00 0.00 0.0\n",
|
| 248 |
+
" Polycystic ovarian syndrome (PCOS) 0.00 0.00 0.00 0.0\n",
|
| 249 |
+
" Premature ovarian failure 0.00 0.00 0.00 1.0\n",
|
| 250 |
+
" Premenstrual tension syndrome 0.00 0.00 0.00 0.0\n",
|
| 251 |
+
" Problem during pregnancy 0.00 0.00 0.00 0.0\n",
|
| 252 |
+
" Protein deficiency 0.00 0.00 0.00 0.0\n",
|
| 253 |
+
" Pseudohypoparathyroidism 0.00 0.00 0.00 1.0\n",
|
| 254 |
+
" Psoriasis 0.00 0.00 0.00 0.0\n",
|
| 255 |
+
" Psychotic disorder 0.00 0.00 0.00 1.0\n",
|
| 256 |
+
" Pulmonary embolism 0.00 0.00 0.00 0.0\n",
|
| 257 |
+
" Pulmonary eosinophilia 0.00 0.00 0.00 1.0\n",
|
| 258 |
+
" Pulmonary fibrosis 0.00 0.00 0.00 0.0\n",
|
| 259 |
+
" Pyelonephritis 0.00 0.00 0.00 0.0\n",
|
| 260 |
+
" Pyloric stenosis 0.00 0.00 0.00 1.0\n",
|
| 261 |
+
" Rabies 0.00 0.00 0.00 0.0\n",
|
| 262 |
+
" Reactive arthritis 0.00 0.00 0.00 1.0\n",
|
| 263 |
+
" Sarcoidosis 0.00 0.00 0.00 1.0\n",
|
| 264 |
+
" Scarlet fever 0.00 0.00 0.00 1.0\n",
|
| 265 |
+
" Sciatica 0.00 0.00 0.00 0.0\n",
|
| 266 |
+
" Scoliosis 0.00 0.00 0.00 1.0\n",
|
| 267 |
+
" Scurvy 0.00 0.00 0.00 1.0\n",
|
| 268 |
+
" Sebaceous cyst 0.00 0.00 0.00 0.0\n",
|
| 269 |
+
" Sepsis 0.00 0.00 0.00 1.0\n",
|
| 270 |
+
" Septic arthritis 0.00 0.00 0.00 1.0\n",
|
| 271 |
+
" Shingles (herpes zoster) 0.00 0.00 0.00 0.0\n",
|
| 272 |
+
" Sickle cell crisis 0.00 0.00 0.00 1.0\n",
|
| 273 |
+
" Sjogren syndrome 0.00 0.00 0.00 1.0\n",
|
| 274 |
+
" Skin pigmentation disorder 0.00 0.00 0.00 1.0\n",
|
| 275 |
+
" Smoking or tobacco addiction 0.00 0.00 0.00 1.0\n",
|
| 276 |
+
" Spermatocele 0.00 0.00 0.00 1.0\n",
|
| 277 |
+
" Spondylitis 0.00 0.00 0.00 0.0\n",
|
| 278 |
+
" Spondylolisthesis 0.00 0.00 0.00 1.0\n",
|
| 279 |
+
" Spondylosis 0.00 0.00 0.00 0.0\n",
|
| 280 |
+
" Sporotrichosis 0.00 0.00 0.00 1.0\n",
|
| 281 |
+
" Sprain or strain 0.00 0.00 0.00 0.0\n",
|
| 282 |
+
" Stenosis of the tear duct 0.00 0.00 0.00 1.0\n",
|
| 283 |
+
" Strep throat 0.00 0.00 0.00 1.0\n",
|
| 284 |
+
" Stress incontinence 0.00 0.00 0.00 1.0\n",
|
| 285 |
+
" Stroke 0.00 0.00 0.00 1.0\n",
|
| 286 |
+
" Subarachnoid hemorrhage 0.00 0.00 0.00 1.0\n",
|
| 287 |
+
" Subconjunctival hemorrhage 0.00 0.00 0.00 1.0\n",
|
| 288 |
+
" Tendinitis 0.00 0.00 0.00 1.0\n",
|
| 289 |
+
" Testicular torsion 0.00 0.00 0.00 1.0\n",
|
| 290 |
+
" Thoracic aortic aneurysm 0.00 0.00 0.00 1.0\n",
|
| 291 |
+
" Tietze syndrome 0.00 0.00 0.00 0.0\n",
|
| 292 |
+
" Tonsillar hypertrophy 0.00 0.00 0.00 1.0\n",
|
| 293 |
+
" Tonsillitis 0.00 0.00 0.00 0.0\n",
|
| 294 |
+
" Tooth abscess 0.00 0.00 0.00 0.0\n",
|
| 295 |
+
" Tooth disorder 0.00 0.00 0.00 0.0\n",
|
| 296 |
+
" Torticollis 0.00 0.00 0.00 1.0\n",
|
| 297 |
+
" Tourette syndrome 0.00 0.00 0.00 1.0\n",
|
| 298 |
+
" Toxoplasmosis 0.00 0.00 0.00 1.0\n",
|
| 299 |
+
" Tracheitis 0.00 0.00 0.00 1.0\n",
|
| 300 |
+
" Transient ischemic attack 0.00 0.00 0.00 0.0\n",
|
| 301 |
+
" Trichinosis 0.00 0.00 0.00 1.0\n",
|
| 302 |
+
" Trichomonas infection 0.00 0.00 0.00 1.0\n",
|
| 303 |
+
" Tricuspid valve disease 0.00 0.00 0.00 1.0\n",
|
| 304 |
+
" Turner syndrome 0.00 0.00 0.00 1.0\n",
|
| 305 |
+
" Urethral stricture 0.00 0.00 0.00 0.0\n",
|
| 306 |
+
" Urge incontinence 0.00 0.00 0.00 1.0\n",
|
| 307 |
+
" Urinary tract obstruction 0.00 0.00 0.00 0.0\n",
|
| 308 |
+
" Vaginal yeast infection 0.00 0.00 0.00 0.0\n",
|
| 309 |
+
" Vaginitis 0.00 0.00 0.00 0.0\n",
|
| 310 |
+
" Varicocele of the testicles 0.00 0.00 0.00 1.0\n",
|
| 311 |
+
" Viral exanthem 0.00 0.00 0.00 1.0\n",
|
| 312 |
+
" Viral warts 0.00 0.00 0.00 0.0\n",
|
| 313 |
+
" Vitamin A deficiency 0.00 0.00 0.00 1.0\n",
|
| 314 |
+
" Vitreous degeneration 0.00 0.00 0.00 0.0\n",
|
| 315 |
+
" Vulvar cancer 0.00 0.00 0.00 1.0\n",
|
| 316 |
+
" Vulvar disorder 0.00 0.00 0.00 1.0\n",
|
| 317 |
+
" Vulvodynia 0.00 0.00 0.00 1.0\n",
|
| 318 |
+
" West Nile virus 0.00 0.00 0.00 1.0\n",
|
| 319 |
+
" Whooping cough 0.00 0.00 0.00 0.0\n",
|
| 320 |
+
" Wilson disease 0.00 0.00 0.00 0.0\n",
|
| 321 |
+
"\n",
|
| 322 |
+
" accuracy 0.00 160.0\n",
|
| 323 |
+
" macro avg 0.00 0.00 0.00 160.0\n",
|
| 324 |
+
" weighted avg 0.00 0.00 0.00 160.0\n",
|
| 325 |
+
"\n"
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"output_type": "stream",
|
| 330 |
+
"name": "stderr",
|
| 331 |
+
"text": [
|
| 332 |
+
"/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 333 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
| 334 |
+
"/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
|
| 335 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
| 336 |
+
"/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 337 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
| 338 |
+
"/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
|
| 339 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
| 340 |
+
"/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 341 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
| 342 |
+
"/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
|
| 343 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n"
|
| 344 |
+
]
|
| 345 |
+
}
|
| 346 |
+
],
|
| 347 |
+
"source": [
|
| 348 |
+
"import pandas as pd\n",
|
| 349 |
+
"import re\n",
|
| 350 |
+
"import spacy\n",
|
| 351 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 352 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
| 353 |
+
"from sklearn.pipeline import Pipeline\n",
|
| 354 |
+
"from sklearn.metrics import accuracy_score, classification_report\n",
|
| 355 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"# Load the data\n",
|
| 358 |
+
"data = pd.read_csv('symptomssingle.csv')\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"# Check for any missing values and remove them\n",
|
| 361 |
+
"data = data.dropna()\n",
|
| 362 |
+
"\n",
|
| 363 |
+
"# Define a function to separate symptoms and diseases from the text\n",
|
| 364 |
+
"def separate_symptoms_and_diseases(text):\n",
|
| 365 |
+
" symptoms = re.findall(r'{\"symptoms\":\"(.*?)\"}', text)\n",
|
| 366 |
+
" disease = re.sub(r'(?:{\"symptoms\":\".*?\"},?)+', '', text).strip()\n",
|
| 367 |
+
" disease = disease.replace('],', '').strip() # Remove '],' from the disease name\n",
|
| 368 |
+
" return symptoms, disease\n",
|
| 369 |
+
"\n",
|
| 370 |
+
"# Apply the function to the data\n",
|
| 371 |
+
"data['symptoms_and_diseases'] = data['data'].apply(separate_symptoms_and_diseases)\n",
|
| 372 |
+
"data[['symptoms', 'disease']] = pd.DataFrame(data['symptoms_and_diseases'].tolist(), index=data.index)\n",
|
| 373 |
+
"data = data.drop(columns=['data', 'symptoms_and_diseases'])\n",
|
| 374 |
+
"\n",
|
| 375 |
+
"# Load the spaCy model\n",
|
| 376 |
+
"nlp = spacy.load('en_core_web_sm')\n",
|
| 377 |
+
"\n",
|
| 378 |
+
"# Preprocessing function\n",
|
| 379 |
+
"def preprocess(symptoms):\n",
|
| 380 |
+
" processed_symptoms = []\n",
|
| 381 |
+
" for symptom in symptoms:\n",
|
| 382 |
+
" doc = nlp(symptom)\n",
|
| 383 |
+
" processed_symptom = ' '.join(token.lemma_.lower() for token in doc if not token.is_stop and token.is_alpha)\n",
|
| 384 |
+
" processed_symptoms.append(processed_symptom)\n",
|
| 385 |
+
" return ' '.join(processed_symptoms)\n",
|
| 386 |
+
"\n",
|
| 387 |
+
"# Preprocess the symptoms column\n",
|
| 388 |
+
"data['symptoms_preprocessed'] = data['symptoms'].apply(preprocess)\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"\n",
|
| 391 |
+
"# Split the data into train and test sets\n",
|
| 392 |
+
"X_train, X_test, y_train, y_test = train_test_split(data['symptoms_preprocessed'], data['disease'], test_size=0.2, random_state=42)\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"# Create a pipeline for text classification\n",
|
| 395 |
+
"pipeline = Pipeline([\n",
|
| 396 |
+
" ('tfidf', TfidfVectorizer(ngram_range=(1, 2))),\n",
|
| 397 |
+
" ('classifier', LogisticRegression(solver='liblinear', C=10))\n",
|
| 398 |
+
"])\n",
|
| 399 |
+
"\n",
|
| 400 |
+
"# Train the model\n",
|
| 401 |
+
"pipeline.fit(X_train, y_train)\n",
|
| 402 |
+
"\n",
|
| 403 |
+
"# Make predictions\n",
|
| 404 |
+
"y_pred = pipeline.predict(X_test)\n",
|
| 405 |
+
"\n",
|
| 406 |
+
"# Evaluate the model\n",
|
| 407 |
+
"print(\"Accuracy: \", accuracy_score(y_test, y_pred))\n",
|
| 408 |
+
"print(\"Classification Report:\\n\", classification_report(y_test, y_pred))\n"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"cell_type": "code",
|
| 413 |
+
"source": [
|
| 414 |
+
"!pip install joblib\n",
|
| 415 |
+
"import joblib\n",
|
| 416 |
+
"\n",
|
| 417 |
+
"# Save the trained model\n",
|
| 418 |
+
"joblib.dump(pipeline, 'DiseasePredictionBasedonSymptoms.joblib')\n"
|
| 419 |
+
],
|
| 420 |
+
"metadata": {
|
| 421 |
+
"colab": {
|
| 422 |
+
"base_uri": "https://localhost:8080/"
|
| 423 |
+
},
|
| 424 |
+
"id": "KGsxAjX2mNH6",
|
| 425 |
+
"outputId": "9cdcae24-8e5d-43f5-c321-40b3fedd2519"
|
| 426 |
+
},
|
| 427 |
+
"execution_count": 9,
|
| 428 |
+
"outputs": [
|
| 429 |
+
{
|
| 430 |
+
"output_type": "stream",
|
| 431 |
+
"name": "stdout",
|
| 432 |
+
"text": [
|
| 433 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
| 434 |
+
"Requirement already satisfied: joblib in /usr/local/lib/python3.9/dist-packages (1.1.1)\n"
|
| 435 |
+
]
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"output_type": "execute_result",
|
| 439 |
+
"data": {
|
| 440 |
+
"text/plain": [
|
| 441 |
+
"['DiseasePredictionBasedonSymptoms.joblib']"
|
| 442 |
+
]
|
| 443 |
+
},
|
| 444 |
+
"metadata": {},
|
| 445 |
+
"execution_count": 9
|
| 446 |
+
}
|
| 447 |
+
]
|
| 448 |
+
},
|
| 449 |
+
{
|
| 450 |
+
"cell_type": "code",
|
| 451 |
+
"source": [
|
| 452 |
+
"import joblib\n",
|
| 453 |
+
"\n",
|
| 454 |
+
"# Load the saved model\n",
|
| 455 |
+
"loaded_pipeline = joblib.load('DiseasePredictionBasedonSymptoms.joblib')\n",
|
| 456 |
+
"\n",
|
| 457 |
+
"# Make predictions using the loaded model (example)\n",
|
| 458 |
+
"sample_symptom = \"Skin Rash\"\n",
|
| 459 |
+
"processed_symptom = preprocess([sample_symptom])\n",
|
| 460 |
+
"prediction = loaded_pipeline.predict([processed_symptom])\n",
|
| 461 |
+
"\n",
|
| 462 |
+
"print(\"Predicted disease:\", prediction[0])\n"
|
| 463 |
+
],
|
| 464 |
+
"metadata": {
|
| 465 |
+
"colab": {
|
| 466 |
+
"base_uri": "https://localhost:8080/"
|
| 467 |
+
},
|
| 468 |
+
"id": "JEuWqGV-mWew",
|
| 469 |
+
"outputId": "292c024d-e739-4c7a-c530-093edd85b08d"
|
| 470 |
+
},
|
| 471 |
+
"execution_count": 10,
|
| 472 |
+
"outputs": [
|
| 473 |
+
{
|
| 474 |
+
"output_type": "stream",
|
| 475 |
+
"name": "stdout",
|
| 476 |
+
"text": [
|
| 477 |
+
"Predicted disease: Contact dermatitis\n"
|
| 478 |
+
]
|
| 479 |
+
}
|
| 480 |
+
]
|
| 481 |
+
}
|
| 482 |
+
]
|
| 483 |
+
}
|
medicalsymptoms1.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""medicalsymptoms1.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1uRT7zfEMnu-tq74GyZoUUtAb-In4XtX8
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import re
|
| 12 |
+
import spacy
|
| 13 |
+
from sklearn.model_selection import train_test_split
|
| 14 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 15 |
+
from sklearn.pipeline import Pipeline
|
| 16 |
+
from sklearn.metrics import accuracy_score, classification_report
|
| 17 |
+
from sklearn.linear_model import LogisticRegression
|
| 18 |
+
|
| 19 |
+
# Load the data
|
| 20 |
+
data = pd.read_csv('symptomssingle.csv')
|
| 21 |
+
|
| 22 |
+
# Check for any missing values and remove them
|
| 23 |
+
data = data.dropna()
|
| 24 |
+
|
| 25 |
+
# Define a function to separate symptoms and diseases from the text
|
| 26 |
+
def separate_symptoms_and_diseases(text):
|
| 27 |
+
symptoms = re.findall(r'{"symptoms":"(.*?)"}', text)
|
| 28 |
+
disease = re.sub(r'(?:{"symptoms":".*?"},?)+', '', text).strip()
|
| 29 |
+
disease = disease.replace('],', '').strip() # Remove '],' from the disease name
|
| 30 |
+
return symptoms, disease
|
| 31 |
+
|
| 32 |
+
# Apply the function to the data
|
| 33 |
+
data['symptoms_and_diseases'] = data['data'].apply(separate_symptoms_and_diseases)
|
| 34 |
+
data[['symptoms', 'disease']] = pd.DataFrame(data['symptoms_and_diseases'].tolist(), index=data.index)
|
| 35 |
+
data = data.drop(columns=['data', 'symptoms_and_diseases'])
|
| 36 |
+
|
| 37 |
+
# Load the spaCy model
|
| 38 |
+
nlp = spacy.load('en_core_web_sm')
|
| 39 |
+
|
| 40 |
+
# Preprocessing function
|
| 41 |
+
def preprocess(symptoms):
|
| 42 |
+
processed_symptoms = []
|
| 43 |
+
for symptom in symptoms:
|
| 44 |
+
doc = nlp(symptom)
|
| 45 |
+
processed_symptom = ' '.join(token.lemma_.lower() for token in doc if not token.is_stop and token.is_alpha)
|
| 46 |
+
processed_symptoms.append(processed_symptom)
|
| 47 |
+
return ' '.join(processed_symptoms)
|
| 48 |
+
|
| 49 |
+
# Preprocess the symptoms column
|
| 50 |
+
data['symptoms_preprocessed'] = data['symptoms'].apply(preprocess)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# Split the data into train and test sets
|
| 54 |
+
X_train, X_test, y_train, y_test = train_test_split(data['symptoms_preprocessed'], data['disease'], test_size=0.2, random_state=42)
|
| 55 |
+
|
| 56 |
+
# Create a pipeline for text classification
|
| 57 |
+
pipeline = Pipeline([
|
| 58 |
+
('tfidf', TfidfVectorizer(ngram_range=(1, 2))),
|
| 59 |
+
('classifier', LogisticRegression(solver='liblinear', C=10))
|
| 60 |
+
])
|
| 61 |
+
|
| 62 |
+
# Train the model
|
| 63 |
+
pipeline.fit(X_train, y_train)
|
| 64 |
+
|
| 65 |
+
# Make predictions
|
| 66 |
+
y_pred = pipeline.predict(X_test)
|
| 67 |
+
|
| 68 |
+
# Evaluate the model
|
| 69 |
+
print("Accuracy: ", accuracy_score(y_test, y_pred))
|
| 70 |
+
print("Classification Report:\n", classification_report(y_test, y_pred))
|
| 71 |
+
|
| 72 |
+
!pip install joblib
|
| 73 |
+
import joblib
|
| 74 |
+
|
| 75 |
+
# Save the trained model
|
| 76 |
+
joblib.dump(pipeline, 'DiseasePredictionBasedonSymptoms.joblib')
|
| 77 |
+
|
| 78 |
+
import joblib
|
| 79 |
+
|
| 80 |
+
# Load the saved model
|
| 81 |
+
loaded_pipeline = joblib.load('DiseasePredictionBasedonSymptoms.joblib')
|
| 82 |
+
|
| 83 |
+
# Make predictions using the loaded model (example)
|
| 84 |
+
sample_symptom = "Skin Rash"
|
| 85 |
+
processed_symptom = preprocess([sample_symptom])
|
| 86 |
+
prediction = loaded_pipeline.predict([processed_symptom])
|
| 87 |
+
|
| 88 |
+
print("Predicted disease:", prediction[0])
|
symptomssingle.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|