Upload create_handler.ipynb with huggingface_hub
Browse files- create_handler.ipynb +229 -0
create_handler.ipynb
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## 1. Setup & Installation"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [
|
| 15 |
+
{
|
| 16 |
+
"name": "stdout",
|
| 17 |
+
"output_type": "stream",
|
| 18 |
+
"text": [
|
| 19 |
+
"Overwriting requirements.txt\n"
|
| 20 |
+
]
|
| 21 |
+
}
|
| 22 |
+
],
|
| 23 |
+
"source": [
|
| 24 |
+
"%%writefile requirements.txt\n",
|
| 25 |
+
"torchaudio==0.11.*\n",
|
| 26 |
+
"git+https://github.com/philschmid/pyannote-audio.git"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": null,
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"outputs": [],
|
| 34 |
+
"source": [
|
| 35 |
+
"!pip install -r requirements.txt --upgrade"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "markdown",
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"source": [
|
| 42 |
+
"## 2. Create Custom Handler for Inference Endpoints\n"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": 2,
|
| 48 |
+
"metadata": {},
|
| 49 |
+
"outputs": [
|
| 50 |
+
{
|
| 51 |
+
"name": "stdout",
|
| 52 |
+
"output_type": "stream",
|
| 53 |
+
"text": [
|
| 54 |
+
"Overwriting handler.py\n"
|
| 55 |
+
]
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
"source": [
|
| 59 |
+
"%%writefile handler.py\n",
|
| 60 |
+
"from typing import Dict\n",
|
| 61 |
+
"from pyannote.audio import Pipeline\n",
|
| 62 |
+
"from transformers.pipelines.audio_utils import ffmpeg_read\n",
|
| 63 |
+
"import torch \n",
|
| 64 |
+
"\n",
|
| 65 |
+
"SAMPLE_RATE = 16000\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"class EndpointHandler():\n",
|
| 70 |
+
" def __init__(self, path=\"\"):\n",
|
| 71 |
+
" # load the model\n",
|
| 72 |
+
" self.pipeline = Pipeline.from_pretrained(\"pyannote/speaker-diarization\")\n",
|
| 73 |
+
"\n",
|
| 74 |
+
"\n",
|
| 75 |
+
" def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:\n",
|
| 76 |
+
" \"\"\"\n",
|
| 77 |
+
" Args:\n",
|
| 78 |
+
" data (:obj:):\n",
|
| 79 |
+
" includes the deserialized audio file as bytes\n",
|
| 80 |
+
" Return:\n",
|
| 81 |
+
" A :obj:`dict`:. base64 encoded image\n",
|
| 82 |
+
" \"\"\"\n",
|
| 83 |
+
" # process input\n",
|
| 84 |
+
" inputs = data.pop(\"inputs\", data)\n",
|
| 85 |
+
" parameters = data.pop(\"parameters\", None) # min_speakers=2, max_speakers=5\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" \n",
|
| 88 |
+
" # prepare pynannote input\n",
|
| 89 |
+
" audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)\n",
|
| 90 |
+
" audio_tensor= torch.from_numpy(audio_nparray).unsqueeze(0)\n",
|
| 91 |
+
" pyannote_input = {\"waveform\": audio_tensor, \"sample_rate\": SAMPLE_RATE}\n",
|
| 92 |
+
" \n",
|
| 93 |
+
" # apply pretrained pipeline\n",
|
| 94 |
+
" # pass inputs with all kwargs in data\n",
|
| 95 |
+
" if parameters is not None:\n",
|
| 96 |
+
" diarization = self.pipeline(pyannote_input, **parameters)\n",
|
| 97 |
+
" else:\n",
|
| 98 |
+
" diarization = self.pipeline(pyannote_input)\n",
|
| 99 |
+
"\n",
|
| 100 |
+
" # postprocess the prediction\n",
|
| 101 |
+
" processed_diarization = [\n",
|
| 102 |
+
" {\"label\": str(label), \"start\": str(segment.start), \"stop\": str(segment.end)}\n",
|
| 103 |
+
" for segment, _, label in diarization.itertracks(yield_label=True)\n",
|
| 104 |
+
" ]\n",
|
| 105 |
+
" \n",
|
| 106 |
+
" return {\"diarization\": processed_diarization}"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "markdown",
|
| 111 |
+
"metadata": {},
|
| 112 |
+
"source": [
|
| 113 |
+
"test custom pipeline"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": 1,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": [
|
| 122 |
+
"from handler import EndpointHandler\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"# init handler\n",
|
| 125 |
+
"my_handler = EndpointHandler(path=\".\")"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": 2,
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"outputs": [],
|
| 133 |
+
"source": [
|
| 134 |
+
"import base64\n",
|
| 135 |
+
"from PIL import Image\n",
|
| 136 |
+
"from io import BytesIO\n",
|
| 137 |
+
"import json\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"# file reader\n",
|
| 140 |
+
"with open(\"sample.wav\", \"rb\") as f:\n",
|
| 141 |
+
" request = {\"inputs\": f.read()}\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"# test the handler\n",
|
| 144 |
+
"pred = my_handler(request)"
|
| 145 |
+
]
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"cell_type": "code",
|
| 149 |
+
"execution_count": 3,
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"outputs": [
|
| 152 |
+
{
|
| 153 |
+
"data": {
|
| 154 |
+
"text/plain": [
|
| 155 |
+
"{'diarization': [{'label': 'SPEAKER_01',\n",
|
| 156 |
+
" 'start': '0.4978125',\n",
|
| 157 |
+
" 'stop': '1.3921875'},\n",
|
| 158 |
+
" {'label': 'SPEAKER_01', 'start': '1.8984375', 'stop': '2.7590624999999998'},\n",
|
| 159 |
+
" {'label': 'SPEAKER_02', 'start': '2.9953125', 'stop': '3.5015625000000004'},\n",
|
| 160 |
+
" {'label': 'SPEAKER_01',\n",
|
| 161 |
+
" 'start': '3.5690625000000002',\n",
|
| 162 |
+
" 'stop': '4.311562500000001'},\n",
|
| 163 |
+
" {'label': 'SPEAKER_02', 'start': '4.6153125', 'stop': '6.7753125'},\n",
|
| 164 |
+
" {'label': 'SPEAKER_00', 'start': '7.1128125', 'stop': '7.551562500000001'},\n",
|
| 165 |
+
" {'label': 'SPEAKER_02',\n",
|
| 166 |
+
" 'start': '7.551562500000001',\n",
|
| 167 |
+
" 'stop': '9.475312500000001'},\n",
|
| 168 |
+
" {'label': 'SPEAKER_02',\n",
|
| 169 |
+
" 'start': '9.812812500000003',\n",
|
| 170 |
+
" 'stop': '10.555312500000003'},\n",
|
| 171 |
+
" {'label': 'SPEAKER_00',\n",
|
| 172 |
+
" 'start': '9.863437500000003',\n",
|
| 173 |
+
" 'stop': '10.420312500000001'},\n",
|
| 174 |
+
" {'label': 'SPEAKER_03', 'start': '12.411562500000002', 'stop': '15.5503125'},\n",
|
| 175 |
+
" {'label': 'SPEAKER_00', 'start': '15.786562500000002', 'stop': '16.1409375'},\n",
|
| 176 |
+
" {'label': 'SPEAKER_01', 'start': '16.1409375', 'stop': '16.1578125'},\n",
|
| 177 |
+
" {'label': 'SPEAKER_00', 'start': '17.1534375', 'stop': '17.4234375'},\n",
|
| 178 |
+
" {'label': 'SPEAKER_01', 'start': '17.7440625', 'stop': '20.3596875'},\n",
|
| 179 |
+
" {'label': 'SPEAKER_01', 'start': '20.6128125', 'stop': '20.6634375'},\n",
|
| 180 |
+
" {'label': 'SPEAKER_00', 'start': '20.6634375', 'stop': '20.8490625'},\n",
|
| 181 |
+
" {'label': 'SPEAKER_01', 'start': '20.8490625', 'stop': '20.8828125'},\n",
|
| 182 |
+
" {'label': 'SPEAKER_01', 'start': '21.1021875', 'stop': '22.1315625'},\n",
|
| 183 |
+
" {'label': 'SPEAKER_02', 'start': '22.4521875', 'stop': '22.7053125'},\n",
|
| 184 |
+
" {'label': 'SPEAKER_02', 'start': '23.2115625', 'stop': '23.4815625'},\n",
|
| 185 |
+
" {'label': 'SPEAKER_01', 'start': '23.4815625', 'stop': '24.0215625'},\n",
|
| 186 |
+
" {'label': 'SPEAKER_02', 'start': '24.3253125', 'stop': '25.5065625'},\n",
|
| 187 |
+
" {'label': 'SPEAKER_01', 'start': '25.8440625', 'stop': '27.3121875'},\n",
|
| 188 |
+
" {'label': 'SPEAKER_02', 'start': '27.3121875', 'stop': '27.4978125'},\n",
|
| 189 |
+
" {'label': 'SPEAKER_01', 'start': '29.7253125', 'stop': '29.9615625'}]}"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
"execution_count": 3,
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"output_type": "execute_result"
|
| 195 |
+
}
|
| 196 |
+
],
|
| 197 |
+
"source": [
|
| 198 |
+
"pred"
|
| 199 |
+
]
|
| 200 |
+
}
|
| 201 |
+
],
|
| 202 |
+
"metadata": {
|
| 203 |
+
"kernelspec": {
|
| 204 |
+
"display_name": "Python 3.9.13 ('dev': conda)",
|
| 205 |
+
"language": "python",
|
| 206 |
+
"name": "python3"
|
| 207 |
+
},
|
| 208 |
+
"language_info": {
|
| 209 |
+
"codemirror_mode": {
|
| 210 |
+
"name": "ipython",
|
| 211 |
+
"version": 3
|
| 212 |
+
},
|
| 213 |
+
"file_extension": ".py",
|
| 214 |
+
"mimetype": "text/x-python",
|
| 215 |
+
"name": "python",
|
| 216 |
+
"nbconvert_exporter": "python",
|
| 217 |
+
"pygments_lexer": "ipython3",
|
| 218 |
+
"version": "3.9.13"
|
| 219 |
+
},
|
| 220 |
+
"orig_nbformat": 4,
|
| 221 |
+
"vscode": {
|
| 222 |
+
"interpreter": {
|
| 223 |
+
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
|
| 224 |
+
}
|
| 225 |
+
}
|
| 226 |
+
},
|
| 227 |
+
"nbformat": 4,
|
| 228 |
+
"nbformat_minor": 2
|
| 229 |
+
}
|