File size: 7,919 Bytes
9ed2e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/env python3
"""
Repository model inspector.

This script is designed to work in `--config-only` mode without importing
PyTorch/Diffusers/Transformers. It reads JSON configs from a local Diffusers
repository layout and prints a summary.

With `--params`, it can also compute parameter counts by scanning
`*.safetensors` headers (without loading tensor data into RAM).
"""

import argparse
import json
import math
from pathlib import Path
from typing import Any, Dict, Iterable, Optional


def load_json(path: Path) -> Dict[str, Any]:
    return json.loads(path.read_text(encoding="utf-8"))


def human_params(value: Optional[int]) -> str:
    if value is None:
        return "n/a"
    if value >= 1_000_000_000:
        return f"{value/1e9:.2f}B"
    return f"{value/1e6:.2f}M"


def read_model_index(model_dir: Path) -> Dict[str, Any]:
    idx_path = model_dir / "model_index.json"
    if not idx_path.exists():
        return {}
    return load_json(idx_path)


def describe_model_index(model_index: Dict[str, Any]) -> None:
    if not model_index:
        return
    print("Pipeline pieces (model_index.json):")
    for key, val in model_index.items():
        if key.startswith("_"):
            continue
        print(f"  {key:14s} -> {val}")
    print()


def detect_pipeline_kind(model_index: Dict[str, Any]) -> str:
    cls = str(model_index.get("_class_name", "")).lower()
    if "zimage" in cls or ("transformer" in model_index and "unet" not in model_index):
        return "zimage"
    if "stable" in cls or "unet" in model_index:
        return "sdxl_like"
    return "unknown"


def iter_safetensors_files(directory: Path) -> Iterable[Path]:
    if not directory.exists():
        return []
    return sorted(p for p in directory.iterdir() if p.is_file() and p.suffix == ".safetensors")


def count_params_from_safetensors(files: Iterable[Path]) -> int:
    from safetensors import safe_open

    total = 0
    for file in files:
        with safe_open(str(file), framework="np") as f:
            for key in f.keys():
                shape = f.get_slice(key).get_shape()
                total += math.prod(shape)
    return int(total)


def zimage_config_only_summary(model_dir: Path, include_params: bool) -> Dict[str, Any]:
    model_index = read_model_index(model_dir)

    te_cfg_path = model_dir / "text_encoder" / "config.json"
    transformer_cfg_path = model_dir / "transformer" / "config.json"
    vae_cfg_path = model_dir / "vae" / "config.json"
    scheduler_cfg_path = model_dir / "scheduler" / "scheduler_config.json"

    te_cfg = load_json(te_cfg_path) if te_cfg_path.exists() else {}
    transformer_cfg = load_json(transformer_cfg_path) if transformer_cfg_path.exists() else {}
    vae_cfg = load_json(vae_cfg_path) if vae_cfg_path.exists() else {}
    scheduler_cfg = load_json(scheduler_cfg_path) if scheduler_cfg_path.exists() else {}

    text_encoder_params = None
    transformer_params = None
    vae_params = None
    if include_params:
        text_encoder_params = count_params_from_safetensors(iter_safetensors_files(model_dir / "text_encoder"))
        transformer_params = count_params_from_safetensors(iter_safetensors_files(model_dir / "transformer"))
        vae_params = count_params_from_safetensors(iter_safetensors_files(model_dir / "vae"))

    print("[Text encoder]")
    if te_cfg:
        arch = te_cfg.get("architectures", [])
        arch_name = arch[0] if isinstance(arch, list) and arch else "n/a"
        print(f"  architecture={arch_name}")
        print(
            "  "
            f"layers={te_cfg.get('num_hidden_layers', 'n/a')}, "
            f"hidden={te_cfg.get('hidden_size', 'n/a')}, "
            f"heads={te_cfg.get('num_attention_heads', 'n/a')}, "
            f"intermediate={te_cfg.get('intermediate_size', 'n/a')}"
        )
        print(f"  vocab={te_cfg.get('vocab_size', 'n/a')}, max_positions={te_cfg.get('max_position_embeddings', 'n/a')}")
    else:
        print("  [warn] missing text_encoder/config.json")
    print(f"  params={human_params(text_encoder_params)}")
    print()

    print("[Transformer]")
    if transformer_cfg:
        print(f"  class={transformer_cfg.get('_class_name', 'n/a')}")
        print(
            "  "
            f"dim={transformer_cfg.get('dim', 'n/a')}, "
            f"layers={transformer_cfg.get('n_layers', 'n/a')}, "
            f"heads={transformer_cfg.get('n_heads', 'n/a')}"
        )
        print(f"  in_channels={transformer_cfg.get('in_channels', 'n/a')}, cap_feat_dim={transformer_cfg.get('cap_feat_dim', 'n/a')}")
        print(f"  patch_size={transformer_cfg.get('all_patch_size', 'n/a')}, f_patch_size={transformer_cfg.get('all_f_patch_size', 'n/a')}")
    else:
        print("  [warn] missing transformer/config.json")
    print(f"  params={human_params(transformer_params)}")
    print()

    print("[VAE]")
    if vae_cfg:
        print(f"  class={vae_cfg.get('_class_name', 'n/a')}")
        print(
            "  "
            f"sample_size={vae_cfg.get('sample_size', 'n/a')}, "
            f"in_channels={vae_cfg.get('in_channels', 'n/a')}, "
            f"latent_channels={vae_cfg.get('latent_channels', 'n/a')}, "
            f"out_channels={vae_cfg.get('out_channels', 'n/a')}"
        )
        print(f"  block_out_channels={vae_cfg.get('block_out_channels', 'n/a')}, scaling_factor={vae_cfg.get('scaling_factor', 'n/a')}")
    else:
        print("  [warn] missing vae/config.json")
    print(f"  params={human_params(vae_params)}")
    print()

    print("[Scheduler]")
    if scheduler_cfg:
        print(
            "  "
            f"class={scheduler_cfg.get('_class_name', 'n/a')}, "
            f"timesteps={scheduler_cfg.get('num_train_timesteps', 'n/a')}, "
            f"shift={scheduler_cfg.get('shift', 'n/a')}"
        )
    else:
        print("  [warn] missing scheduler/scheduler_config.json")
    print()

    return {
        "kind": "zimage",
        "pipeline": model_index,
        "text_encoder": {"config": te_cfg, "params": text_encoder_params},
        "transformer": {"config": transformer_cfg, "params": transformer_params},
        "vae": {"config": vae_cfg, "params": vae_params},
        "scheduler": {"config": scheduler_cfg},
    }


def main() -> None:
    parser = argparse.ArgumentParser(description="Inspect a local Diffusers-style repository layout.")
    parser.add_argument("--model-dir", type=Path, default=Path(".."), help="Path to the diffusers pipeline directory.")
    parser.add_argument("--device", default="cpu", help="Unused (kept for CLI compatibility).")
    parser.add_argument("--fp16", action="store_true", help="Unused (kept for CLI compatibility).")
    parser.add_argument("--config-only", action="store_true", help="Read JSON configs and print a summary.")
    parser.add_argument("--params", action="store_true", help="Count parameters from *.safetensors headers (no tensor loading).")
    parser.add_argument("--json-out", type=Path, default=None, help="Write a JSON summary to this path.")
    args = parser.parse_args()

    model_index = read_model_index(args.model_dir)
    if not model_index:
        raise SystemExit(f"model_index.json not found under {args.model_dir}")

    describe_model_index(model_index)
    kind = detect_pipeline_kind(model_index)

    if not args.config_only:
        raise SystemExit("Only --config-only mode is supported by this inspector.")

    if kind != "zimage":
        raise SystemExit(f"Unsupported pipeline kind: {kind} (expected ZImagePipeline-style layout)")

    summary = zimage_config_only_summary(args.model_dir, include_params=args.params)

    if args.json_out is not None:
        args.json_out.parent.mkdir(parents=True, exist_ok=True)
        args.json_out.write_text(json.dumps(summary, indent=2, ensure_ascii=False) + "\n", encoding="utf-8")
        print(f"[info] wrote JSON summary to {args.json_out}")


if __name__ == "__main__":
    main()