#!/usr/bin/env python3 """ Repository model inspector. This script is designed to work in `--config-only` mode without importing PyTorch/Diffusers/Transformers. It reads JSON configs from a local Diffusers repository layout and prints a summary. With `--params`, it can also compute parameter counts by scanning `*.safetensors` headers (without loading tensor data into RAM). """ import argparse import json import math from pathlib import Path from typing import Any, Dict, Iterable, Optional def load_json(path: Path) -> Dict[str, Any]: return json.loads(path.read_text(encoding="utf-8")) def human_params(value: Optional[int]) -> str: if value is None: return "n/a" if value >= 1_000_000_000: return f"{value/1e9:.2f}B" return f"{value/1e6:.2f}M" def read_model_index(model_dir: Path) -> Dict[str, Any]: idx_path = model_dir / "model_index.json" if not idx_path.exists(): return {} return load_json(idx_path) def describe_model_index(model_index: Dict[str, Any]) -> None: if not model_index: return print("Pipeline pieces (model_index.json):") for key, val in model_index.items(): if key.startswith("_"): continue print(f" {key:14s} -> {val}") print() def detect_pipeline_kind(model_index: Dict[str, Any]) -> str: cls = str(model_index.get("_class_name", "")).lower() if "zimage" in cls or ("transformer" in model_index and "unet" not in model_index): return "zimage" if "stable" in cls or "unet" in model_index: return "sdxl_like" return "unknown" def iter_safetensors_files(directory: Path) -> Iterable[Path]: if not directory.exists(): return [] return sorted(p for p in directory.iterdir() if p.is_file() and p.suffix == ".safetensors") def count_params_from_safetensors(files: Iterable[Path]) -> int: from safetensors import safe_open total = 0 for file in files: with safe_open(str(file), framework="np") as f: for key in f.keys(): shape = f.get_slice(key).get_shape() total += math.prod(shape) return int(total) def zimage_config_only_summary(model_dir: Path, include_params: bool) -> Dict[str, Any]: model_index = read_model_index(model_dir) te_cfg_path = model_dir / "text_encoder" / "config.json" transformer_cfg_path = model_dir / "transformer" / "config.json" vae_cfg_path = model_dir / "vae" / "config.json" scheduler_cfg_path = model_dir / "scheduler" / "scheduler_config.json" te_cfg = load_json(te_cfg_path) if te_cfg_path.exists() else {} transformer_cfg = load_json(transformer_cfg_path) if transformer_cfg_path.exists() else {} vae_cfg = load_json(vae_cfg_path) if vae_cfg_path.exists() else {} scheduler_cfg = load_json(scheduler_cfg_path) if scheduler_cfg_path.exists() else {} text_encoder_params = None transformer_params = None vae_params = None if include_params: text_encoder_params = count_params_from_safetensors(iter_safetensors_files(model_dir / "text_encoder")) transformer_params = count_params_from_safetensors(iter_safetensors_files(model_dir / "transformer")) vae_params = count_params_from_safetensors(iter_safetensors_files(model_dir / "vae")) print("[Text encoder]") if te_cfg: arch = te_cfg.get("architectures", []) arch_name = arch[0] if isinstance(arch, list) and arch else "n/a" print(f" architecture={arch_name}") print( " " f"layers={te_cfg.get('num_hidden_layers', 'n/a')}, " f"hidden={te_cfg.get('hidden_size', 'n/a')}, " f"heads={te_cfg.get('num_attention_heads', 'n/a')}, " f"intermediate={te_cfg.get('intermediate_size', 'n/a')}" ) print(f" vocab={te_cfg.get('vocab_size', 'n/a')}, max_positions={te_cfg.get('max_position_embeddings', 'n/a')}") else: print(" [warn] missing text_encoder/config.json") print(f" params={human_params(text_encoder_params)}") print() print("[Transformer]") if transformer_cfg: print(f" class={transformer_cfg.get('_class_name', 'n/a')}") print( " " f"dim={transformer_cfg.get('dim', 'n/a')}, " f"layers={transformer_cfg.get('n_layers', 'n/a')}, " f"heads={transformer_cfg.get('n_heads', 'n/a')}" ) print(f" in_channels={transformer_cfg.get('in_channels', 'n/a')}, cap_feat_dim={transformer_cfg.get('cap_feat_dim', 'n/a')}") print(f" patch_size={transformer_cfg.get('all_patch_size', 'n/a')}, f_patch_size={transformer_cfg.get('all_f_patch_size', 'n/a')}") else: print(" [warn] missing transformer/config.json") print(f" params={human_params(transformer_params)}") print() print("[VAE]") if vae_cfg: print(f" class={vae_cfg.get('_class_name', 'n/a')}") print( " " f"sample_size={vae_cfg.get('sample_size', 'n/a')}, " f"in_channels={vae_cfg.get('in_channels', 'n/a')}, " f"latent_channels={vae_cfg.get('latent_channels', 'n/a')}, " f"out_channels={vae_cfg.get('out_channels', 'n/a')}" ) print(f" block_out_channels={vae_cfg.get('block_out_channels', 'n/a')}, scaling_factor={vae_cfg.get('scaling_factor', 'n/a')}") else: print(" [warn] missing vae/config.json") print(f" params={human_params(vae_params)}") print() print("[Scheduler]") if scheduler_cfg: print( " " f"class={scheduler_cfg.get('_class_name', 'n/a')}, " f"timesteps={scheduler_cfg.get('num_train_timesteps', 'n/a')}, " f"shift={scheduler_cfg.get('shift', 'n/a')}" ) else: print(" [warn] missing scheduler/scheduler_config.json") print() return { "kind": "zimage", "pipeline": model_index, "text_encoder": {"config": te_cfg, "params": text_encoder_params}, "transformer": {"config": transformer_cfg, "params": transformer_params}, "vae": {"config": vae_cfg, "params": vae_params}, "scheduler": {"config": scheduler_cfg}, } def main() -> None: parser = argparse.ArgumentParser(description="Inspect a local Diffusers-style repository layout.") parser.add_argument("--model-dir", type=Path, default=Path(".."), help="Path to the diffusers pipeline directory.") parser.add_argument("--device", default="cpu", help="Unused (kept for CLI compatibility).") parser.add_argument("--fp16", action="store_true", help="Unused (kept for CLI compatibility).") parser.add_argument("--config-only", action="store_true", help="Read JSON configs and print a summary.") parser.add_argument("--params", action="store_true", help="Count parameters from *.safetensors headers (no tensor loading).") parser.add_argument("--json-out", type=Path, default=None, help="Write a JSON summary to this path.") args = parser.parse_args() model_index = read_model_index(args.model_dir) if not model_index: raise SystemExit(f"model_index.json not found under {args.model_dir}") describe_model_index(model_index) kind = detect_pipeline_kind(model_index) if not args.config_only: raise SystemExit("Only --config-only mode is supported by this inspector.") if kind != "zimage": raise SystemExit(f"Unsupported pipeline kind: {kind} (expected ZImagePipeline-style layout)") summary = zimage_config_only_summary(args.model_dir, include_params=args.params) if args.json_out is not None: args.json_out.parent.mkdir(parents=True, exist_ok=True) args.json_out.write_text(json.dumps(summary, indent=2, ensure_ascii=False) + "\n", encoding="utf-8") print(f"[info] wrote JSON summary to {args.json_out}") if __name__ == "__main__": main()