sudongpo commited on
Commit
79dac1d
·
verified ·
1 Parent(s): 3bebfc8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 2048,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": false
10
+ }
README.md ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+
3
+ # <img src="assets/rag_logo.png" alt="Youtu Logo" height="46px"> Youtu-Embedding
4
+
5
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
6
+ [![GitHub](https://img.shields.io/badge/GitHub-Tencent-blue.svg)](https://github.com/TencentCloudADP/youtu-embedding)
7
+ [![Huggingface](https://img.shields.io/badge/Huggingface-YoutuRAG-blue)](https://huggingface.co/tencent/Youtu-Embedding)
8
+ [![WeChat Community](https://img.shields.io/badge/Community-WeChat-32CD32)](assets/wechat_qr.png)
9
+ [![Discord Community](https://img.shields.io/badge/Community-Discord-8A2BE2)](https://discord.gg/QjqhkHQVVM)
10
+
11
+ </div>
12
+
13
+ ## 🎯 Introduction
14
+
15
+ **Youtu-Embedding** is a state-of-the-art, general-purpose text embedding model developed by Tencent Youtu Lab. It delivers exceptional performance across a wide range of natural language processing tasks, including Information Retrieval (IR), Semantic Textual Similarity (STS), Clustering, Reranking, and Classification.
16
+
17
+ - **Top-Ranked Performance**: Achieved the #1 score of **77.46** on the authoritative CMTEB (Chinese Massive Text Embedding Benchmark) as of September 2025, demonstrating its powerful and robust text representation capabilities.
18
+
19
+ - **Innovative Training Framework**: Features a Collaborative-Discriminative Fine-tuning Framework designed to resolve the "negative transfer" problem in multi-task learning. This is accomplished through a unified data format, task-differentiated loss functions, and a dynamic single-task sampling mechanism.
20
+
21
+
22
+ > **Note**: You can easily adapt and fine-tune the model on your own datasets for domain-specific tasks. For implementation details, please refer to the [training code](https://github.com/TencentCloudADP/youtu-embedding).
23
+
24
+
25
+ ## 🤗 Model Download
26
+
27
+ | Model Name | Parameters | Dimensions | Sequence Length | Download |
28
+ | :------------------- | :--------: | :--------: | :-----------------: | :------------------------------------------------------------------------------------------ |
29
+ | Youtu-Embedding-V1 | 2B | 2048 | 8K | [Model](https://huggingface.co/tencent/Youtu-Embedding) |
30
+
31
+
32
+ ## 🚀 Usage
33
+ #### 1. Using `transformers`
34
+ **📦 Installation**
35
+ ```bash
36
+ pip install transformers==4.51.3 liger_kernel==0.5.4
37
+ ```
38
+ **⚙️ Usage**
39
+ ```python
40
+ import torch
41
+ import numpy as np
42
+ from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
43
+
44
+
45
+ class LLMEmbeddingModel():
46
+
47
+ def __init__(self,
48
+ model_name_or_path,
49
+ batch_size=128,
50
+ max_length=1024,
51
+ gpu_id=0):
52
+ self.model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
53
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right")
54
+
55
+ self.device = torch.device(f"cuda:{gpu_id}")
56
+ self.model.to(self.device).eval()
57
+
58
+ self.max_length = max_length
59
+ self.batch_size = batch_size
60
+
61
+ query_instruction = "Given a search query, retrieve passages that answer the question"
62
+ if query_instruction:
63
+ self.query_instruction = f"Instruction: {query_instruction} \nQuery: "
64
+ else:
65
+ self.query_instruction = "Query: "
66
+
67
+ self.doc_instruction = ""
68
+ print(f"query instruction: {[self.query_instruction]}\ndoc instruction: {[self.doc_instruction]}")
69
+
70
+ def mean_pooling(self, hidden_state, attention_mask):
71
+ s = torch.sum(hidden_state * attention_mask.unsqueeze(-1).float(), dim=1)
72
+ d = attention_mask.sum(dim=1, keepdim=True).float()
73
+ embedding = s / d
74
+ return embedding
75
+
76
+ @torch.no_grad()
77
+ def encode(self, sentences_batch, instruction):
78
+ inputs = self.tokenizer(
79
+ sentences_batch,
80
+ padding=True,
81
+ truncation=True,
82
+ return_tensors="pt",
83
+ max_length=self.max_length,
84
+ add_special_tokens=True,
85
+ ).to(self.device)
86
+
87
+ with torch.no_grad():
88
+ outputs = self.model(**inputs)
89
+ last_hidden_state = outputs[0]
90
+
91
+ instruction_tokens = self.tokenizer(
92
+ instruction,
93
+ padding=False,
94
+ truncation=True,
95
+ max_length=self.max_length,
96
+ add_special_tokens=True,
97
+ )["input_ids"]
98
+ if len(np.shape(np.array(instruction_tokens))) == 1:
99
+ inputs["attention_mask"][:, :len(instruction_tokens)] = 0
100
+ else:
101
+ instruction_length = [len(item) for item in instruction_tokens]
102
+ assert len(instruction) == len(sentences_batch)
103
+ for idx in range(len(instruction_length)):
104
+ inputs["attention_mask"][idx, :instruction_length[idx]] = 0
105
+
106
+ embeddings = self.mean_pooling(last_hidden_state, inputs["attention_mask"])
107
+ embeddings = torch.nn.functional.normalize(embeddings, dim=-1)
108
+ return embeddings
109
+
110
+ def encode_queries(self, queries):
111
+ queries = queries if isinstance(queries, list) else [queries]
112
+ queries = [f"{self.query_instruction}{query}" for query in queries]
113
+ return self.encode(queries, self.query_instruction)
114
+
115
+ def encode_passages(self, passages):
116
+ passages = passages if isinstance(passages, list) else [passages]
117
+ passages = [f"{self.doc_instruction}{passage}" for passage in passages]
118
+ return self.encode(passages, self.doc_instruction)
119
+
120
+ def compute_similarity_for_vectors(self, q_reps, p_reps):
121
+ if len(p_reps.size()) == 2:
122
+ return torch.matmul(q_reps, p_reps.transpose(0, 1))
123
+ return torch.matmul(q_reps, p_reps.transpose(-2, -1))
124
+
125
+ def compute_similarity(self, queries, passages):
126
+ q_reps = self.encode_queries(queries)
127
+ p_reps = self.encode_passages(passages)
128
+ scores = self.compute_similarity_for_vectors(q_reps, p_reps)
129
+ scores = scores.detach().cpu().tolist()
130
+ return scores
131
+
132
+
133
+ queries = ["What's the weather like?"]
134
+ passages = [
135
+ 'The weather is lovely today.',
136
+ "It's so sunny outside!",
137
+ 'He drove to the stadium.'
138
+ ]
139
+
140
+ model_name_or_path = "tencent/Youtu-Embedding"
141
+ model = LLMEmbeddingModel(model_name_or_path)
142
+ scores = model.compute_similarity(queries, passages)
143
+ print(f"scores: {scores}")
144
+ ```
145
+
146
+ #### 2. Using `sentence-transformers`
147
+ **📦 Installation**
148
+ ```bash
149
+ pip install sentence-transformers==5.1.0
150
+ ```
151
+ **⚙️ Usage**
152
+ ```python
153
+ from sentence_transformers import SentenceTransformer
154
+
155
+ model = SentenceTransformer("tencent/Youtu-Embedding", trust_remote_code=True)
156
+ queries = ["What's the weather like?"]
157
+ passages = [
158
+ 'The weather is lovely today.',
159
+ "It's so sunny outside!",
160
+ 'He drove to the stadium.'
161
+ ]
162
+ queries_embeddings = model.encode_query(queries)
163
+ passages_embeddings = model.encode_document(passages)
164
+
165
+ similarities = model.similarity(queries_embeddings, passages_embeddings)
166
+ print(similarities)
167
+ ```
168
+
169
+ #### 3. Using `LangChain` 🦜
170
+ Easily integrate the model into your **LangChain** applications, such as RAG pipelines.
171
+
172
+ **📦 Installation**
173
+
174
+ ```bash
175
+ pip install langchain==0.3.27 langchain-community==0.3.29 langchain-huggingface==0.3.1 sentence-transformers==5.1.0 faiss-cpu==1.11.0
176
+ ```
177
+
178
+ **⚙️ Usage**
179
+ ```python
180
+ import torch
181
+ from langchain.docstore.document import Document
182
+ from langchain_community.vectorstores import FAISS
183
+ from langchain_huggingface.embeddings import HuggingFaceEmbeddings
184
+
185
+ model_name_or_path = "tencent/Youtu-Embedding"
186
+ device = "cuda" if torch.cuda.is_available() else "cpu"
187
+
188
+ model_kwargs = {
189
+ 'trust_remote_code': True,
190
+ 'device': device
191
+ }
192
+
193
+ embedder = HuggingFaceEmbeddings(
194
+ model_name=model_name_or_path,
195
+ model_kwargs=model_kwargs,
196
+ )
197
+
198
+ query_instruction = "Instruction: Given a search query, retrieve passages that answer the question \nQuery: "
199
+ doc_instruction = ""
200
+
201
+ data = [
202
+ "Venus is often called Earth's twin because of its similar size and proximity.",
203
+ "Mars, known for its reddish appearance, is often referred to as the Red Planet.",
204
+ "Jupiter, the largest planet in our solar system, has a prominent red spot.",
205
+ "Saturn, famous for its rings, is sometimes mistaken for the Red Planet."
206
+ ]
207
+
208
+ documents = [Document(page_content=text, metadata={"id": i}) for i, text in enumerate(data)]
209
+ vector_store = FAISS.from_documents(documents, embedder, distance_strategy="MAX_INNER_PRODUCT")
210
+
211
+ query = "Which planet is known as the Red Planet?"
212
+ instructed_query = query_instruction + query
213
+ results = vector_store.similarity_search_with_score(instructed_query, k=3)
214
+
215
+ print(f"Original Query: {query}\n")
216
+ print("Results:")
217
+ for doc, score in results:
218
+ print(f"- Text: {doc.page_content} (Score: {score:.4f})")
219
+
220
+ ```
221
+
222
+ #### 4. Using `LlamaIndex` 🦙
223
+ This is perfect for integrating the model into your **LlamaIndex** search and retrieval systems.
224
+
225
+ **📦 Installation**
226
+
227
+ ```bash
228
+ pip install llama-index==0.14.2 llama-index-embeddings-huggingface==0.6.1 sentence-transformers==5.1.0 llama-index-vector-stores-faiss==0.5.1
229
+ ```
230
+
231
+ **⚙️ Usage**
232
+ ```python
233
+ import faiss
234
+ import torch
235
+ from llama_index.core.schema import TextNode
236
+ from llama_index.core.vector_stores import VectorStoreQuery
237
+ from llama_index.vector_stores.faiss import FaissVectorStore
238
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
239
+
240
+ model_name_or_path = "tencent/Youtu-Embedding"
241
+ device = "cuda" if torch.cuda.is_available() else "cpu"
242
+
243
+ embeddings = HuggingFaceEmbedding(
244
+ model_name=model_name_or_path,
245
+ trust_remote_code=True,
246
+ device=device,
247
+ query_instruction="Instruction: Given a search query, retrieve passages that answer the question \nQuery: ",
248
+ text_instruction=""
249
+ )
250
+
251
+ data = [
252
+ "Venus is often called Earth's twin because of its similar size and proximity.",
253
+ "Mars, known for its reddish appearance, is often referred to as the Red Planet.",
254
+ "Jupiter, the largest planet in our solar system, has a prominent red spot.",
255
+ "Saturn, famous for its rings, is sometimes mistaken for the Red Planet."
256
+ ]
257
+
258
+ nodes = [TextNode(id_=str(i), text=text) for i, text in enumerate(data)]
259
+
260
+ for node in nodes:
261
+ node.embedding = embeddings.get_text_embedding(node.get_content())
262
+
263
+ embed_dim = len(nodes[0].embedding)
264
+ store = FaissVectorStore(faiss_index=faiss.IndexFlatIP(embed_dim))
265
+ store.add(nodes)
266
+
267
+ query = "Which planet is known as the Red Planet?"
268
+ query_embedding = embeddings.get_query_embedding(query)
269
+
270
+ results = store.query(
271
+ VectorStoreQuery(query_embedding=query_embedding, similarity_top_k=3)
272
+ )
273
+
274
+ print(f"Query: {query}\n")
275
+ print("Results:")
276
+ for idx, score in zip(results.ids, results.similarities):
277
+ print(f"- Text: {data[int(idx)]} (Score: {score:.4f})")
278
+
279
+ ```
280
+
281
+
282
+ ## 📊 CMTEB
283
+ | Model | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retr. | STS |
284
+ | :------------------------ | :--------------| :----------------- | :----------------- | :----: | :----: | :---------: | :-----: | :----: | :---: |
285
+ | bge-multilingual-gemma2 | 9B | 67.64 | 68.52 | 75.31 | 59.30 | 79.30 | 68.28 | 73.73 | 55.19 |
286
+ | ritrieve\_zh\_v1 | 326M | 72.71 | 73.85 | 76.88 | 66.50 | 85.98 | 72.86 | 76.97 | 63.92 |
287
+ | Qwen3-Embedding-4B | 4B | 72.27 | 73.51 | 75.46 | 77.89 | 83.34 | 66.05 | 77.03 | 61.26 |
288
+ | Qwen3-Embedding-8B | 8B | 73.84 | 75.00 | 76.97 | 80.08 | 84.23 | 66.99 | 78.21 | 63.53 |
289
+ | Conan-embedding-v2 | 1.4B | 74.24 | 75.99 | 76.47 | 68.84 | 92.44 | 74.41 | 78.31 | 65.48 |
290
+ | Seed1.6-embedding | - | 75.63 | 76.68 | 77.98 | 73.11 | 88.71 | 71.65 | 79.69 | 68.94 |
291
+ | QZhou-Embedding | 7B | 76.99 | 78.58 | 79.99 | 70.91 | 95.07 | 74.85 | 78.80 | 71.89 |
292
+ | **Youtu-Embedding-V1** | 2B | **77.60** | **78.85** | 78.04 | 79.67 | 89.69 | 73.85 | 80.95 | 70.91 |
293
+
294
+ > **Note**: Comparative scores are from the MTEB [leaderboard](https://huggingface.co/spaces/mteb/leaderboard), recorded on September 28, 2025.
295
+
296
+
297
+ ## 🎉 Citation
298
+ ```bibtex
299
+ @misc{zhang2025codiemb,
300
+ title={CoDiEmb: A Collaborative yet Distinct Framework for Unified Representation Learning in Information Retrieval and Semantic Textual Similarity},
301
+ author={Zhang, Bowen and Song, Zixin and Chen, Chunquan and Zhang, Qian-Wen and Yin, Di and Sun, Xing},
302
+ year={2025},
303
+ eprint={2508.11442},
304
+ archivePrefix={arXiv},
305
+ url={https://arxiv.org/abs/2508.11442},
306
+ }
307
+ ```
308
+
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "UTUModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_utu.UTUConfig",
9
+ "AutoModel": "modeling_utu-liger.UTUModel",
10
+ "AutoModelForCausalLM": "modeling_utu-liger.UTUForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "embedding_initializer_range": 0.02795084971874737,
14
+ "eos_token_id": 128001,
15
+ "head_dim": 64,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 2048,
18
+ "initializer_range": 0.013975424859373685,
19
+ "intermediate_size": 8192,
20
+ "max_position_embeddings": 131072,
21
+ "mlp_bias": false,
22
+ "model_type": "utu",
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 32,
25
+ "num_key_value_heads": 32,
26
+ "pretraining_tp": 1,
27
+ "rms_norm_eps": 1e-08,
28
+ "rope_scaling": null,
29
+ "rope_theta": 1600000.0,
30
+ "tie_word_embeddings": true,
31
+ "tokenizer_class": "PreTrainedTokenizerFast",
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.51.3",
34
+ "use_cache": false,
35
+ "vocab_size": 128256
36
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.1",
5
+ "transformers": "4.51.3",
6
+ "pytorch": "2.5.1+cu118"
7
+ },
8
+ "prompts": {
9
+ "query": "Instruction: Given a Chinese search query, retrieve web passages that answer the question \nQuery: ",
10
+ "document": "",
11
+ "passage": ""
12
+ },
13
+ "default_prompt_name": null,
14
+ "similarity_fn_name": "cosine"
15
+ }
configuration_utu.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """UTU model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class UTUConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`UTUModel`]. It is used to instantiate an UTU
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the UTU-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the UTU model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`UTUModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. UTU 1 supports up to 2048 tokens,
60
+ UTU 2 up to 4096, CodeUTU up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ embedding_initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing the token embeddings.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ pad_token_id (`int`, *optional*):
71
+ Padding token id.
72
+ bos_token_id (`int`, *optional*, defaults to 1):
73
+ Beginning of stream token id.
74
+ eos_token_id (`int`, *optional*, defaults to 2):
75
+ End of stream token id.
76
+ pretraining_tp (`int`, *optional*, defaults to 1):
77
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
78
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
79
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
80
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`Dict`, *optional*):
86
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
87
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
88
+ accordingly.
89
+ Expected contents:
90
+ `rope_type` (`str`):
91
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
92
+ 'UTU3'], with 'default' being the original RoPE implementation.
93
+ `factor` (`float`, *optional*):
94
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
95
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
96
+ original maximum pre-trained length.
97
+ `original_max_position_embeddings` (`int`, *optional*):
98
+ Used with 'dynamic', 'longrope' and 'UTU3'. The original max position embeddings used during
99
+ pretraining.
100
+ `attention_factor` (`float`, *optional*):
101
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
102
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
103
+ `factor` field to infer the suggested value.
104
+ `beta_fast` (`float`, *optional*):
105
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
106
+ ramp function. If unspecified, it defaults to 32.
107
+ `beta_slow` (`float`, *optional*):
108
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
109
+ ramp function. If unspecified, it defaults to 1.
110
+ `short_factor` (`List[float]`, *optional*):
111
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
112
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
113
+ size divided by the number of attention heads divided by 2
114
+ `long_factor` (`List[float]`, *optional*):
115
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
116
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
117
+ size divided by the number of attention heads divided by 2
118
+ `low_freq_factor` (`float`, *optional*):
119
+ Only used with 'UTU3'. Scaling factor applied to low frequency components of the RoPE
120
+ `high_freq_factor` (`float`, *optional*):
121
+ Only used with 'UTU3'. Scaling factor applied to high frequency components of the RoPE
122
+ attention_bias (`bool`, *optional*, defaults to `False`):
123
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
124
+ attention_dropout (`float`, *optional*, defaults to 0.0):
125
+ The dropout ratio for the attention probabilities.
126
+ mlp_bias (`bool`, *optional*, defaults to `False`):
127
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
128
+ head_dim (`int`, *optional*):
129
+ The attention head dimension. If None, it will default to hidden_size // num_attention_heads
130
+
131
+ ```python
132
+ >>> from transformers import UTUModel, UTUConfig
133
+
134
+ >>> # Initializing a UTU UTU-7b style configuration
135
+ >>> configuration = UTUConfig()
136
+
137
+ >>> # Initializing a model from the UTU-7b style configuration
138
+ >>> model = UTUModel(configuration)
139
+
140
+ >>> # Accessing the model configuration
141
+ >>> configuration = model.config
142
+ ```"""
143
+
144
+ model_type = "utu"
145
+ keys_to_ignore_at_inference = ["past_key_values"]
146
+ # Default tensor parallel plan for base model `UTUModel`
147
+ base_model_tp_plan = {
148
+ "layers.*.self_attn.q_proj": "colwise",
149
+ "layers.*.self_attn.k_proj": "colwise",
150
+ "layers.*.self_attn.v_proj": "colwise",
151
+ "layers.*.self_attn.o_proj": "rowwise",
152
+ "layers.*.mlp.gate_proj": "colwise",
153
+ "layers.*.mlp.up_proj": "colwise",
154
+ "layers.*.mlp.down_proj": "rowwise",
155
+ }
156
+ base_model_pp_plan = {
157
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
158
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
159
+ "norm": (["hidden_states"], ["hidden_states"]),
160
+ }
161
+
162
+ def __init__(
163
+ self,
164
+ vocab_size=32000,
165
+ hidden_size=4096,
166
+ intermediate_size=11008,
167
+ num_hidden_layers=32,
168
+ num_attention_heads=32,
169
+ num_key_value_heads=None,
170
+ hidden_act="silu",
171
+ max_position_embeddings=2048,
172
+ initializer_range=None,
173
+ embedding_initializer_range=None,
174
+ rms_norm_eps=1e-6,
175
+ use_cache=True,
176
+ pad_token_id=None,
177
+ bos_token_id=1,
178
+ eos_token_id=2,
179
+ pretraining_tp=1,
180
+ tie_word_embeddings=False,
181
+ rope_theta=10000.0,
182
+ rope_scaling=None,
183
+ attention_bias=False,
184
+ attention_dropout=0.0,
185
+ mlp_bias=False,
186
+ head_dim=None,
187
+ **kwargs,
188
+ ):
189
+ self.vocab_size = vocab_size
190
+ self.max_position_embeddings = max_position_embeddings
191
+ self.hidden_size = hidden_size
192
+ self.intermediate_size = intermediate_size
193
+ self.num_hidden_layers = num_hidden_layers
194
+ self.num_attention_heads = num_attention_heads
195
+
196
+ # for backward compatibility
197
+ if num_key_value_heads is None:
198
+ num_key_value_heads = num_attention_heads
199
+
200
+ self.num_key_value_heads = num_key_value_heads
201
+ self.hidden_act = hidden_act
202
+ self.initializer_range = (2.0 / (5.0 * self.hidden_size)) ** 0.5 if initializer_range is None else initializer_range
203
+ self.embedding_initializer_range = self.initializer_range * 2.0 if embedding_initializer_range is None else embedding_initializer_range
204
+ self.rms_norm_eps = rms_norm_eps
205
+ self.pretraining_tp = pretraining_tp
206
+ self.use_cache = use_cache
207
+ self.rope_theta = rope_theta
208
+ self.rope_scaling = rope_scaling
209
+ self.attention_bias = attention_bias
210
+ self.attention_dropout = attention_dropout
211
+ self.mlp_bias = mlp_bias
212
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
213
+ # Validate the correctness of rotary position embeddings parameters
214
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
215
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
216
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
217
+ rope_config_validation(self)
218
+
219
+ super().__init__(
220
+ pad_token_id=pad_token_id,
221
+ bos_token_id=bos_token_id,
222
+ eos_token_id=eos_token_id,
223
+ tie_word_embeddings=tie_word_embeddings,
224
+ **kwargs,
225
+ )
226
+
227
+
228
+ __all__ = ["UTUConfig"]
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c48645ac2b151ba2a348b0815aed69fddb5e86eaad5196d1df3f0b091f917e42
3
+ size 4943241808
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdac20206cde8430e8191321a1904ebad23cdb2eacb24341ba20e9895704132b
3
+ size 4697953032
model.safetensors.index.json ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9641156608
4
+ },
5
+ "weight_map": {
6
+ "embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
13
+ "layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
16
+ "layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
24
+ "layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
25
+ "layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
26
+ "layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
27
+ "layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
28
+ "layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
29
+ "layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
31
+ "layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
32
+ "layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
33
+ "layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
35
+ "layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
36
+ "layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
38
+ "layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
39
+ "layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
42
+ "layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
43
+ "layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
44
+ "layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
46
+ "layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
47
+ "layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
48
+ "layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
49
+ "layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
50
+ "layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
53
+ "layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
54
+ "layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
55
+ "layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
57
+ "layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
+ "layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
+ "layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
60
+ "layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
68
+ "layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
69
+ "layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
70
+ "layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
71
+ "layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
74
+ "layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
75
+ "layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "layers.14.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
77
+ "layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
78
+ "layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
79
+ "layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
80
+ "layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
81
+ "layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
82
+ "layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
83
+ "layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
84
+ "layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
85
+ "layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
86
+ "layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
87
+ "layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
88
+ "layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
89
+ "layers.15.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
90
+ "layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
91
+ "layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
92
+ "layers.15.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
93
+ "layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
94
+ "layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
95
+ "layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
96
+ "layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
97
+ "layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
98
+ "layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
99
+ "layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
100
+ "layers.16.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
101
+ "layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
102
+ "layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
103
+ "layers.16.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
104
+ "layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
105
+ "layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
106
+ "layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
107
+ "layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
108
+ "layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
109
+ "layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
110
+ "layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
111
+ "layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
112
+ "layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
113
+ "layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
114
+ "layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
115
+ "layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
116
+ "layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
117
+ "layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
118
+ "layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
119
+ "layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
120
+ "layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
121
+ "layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
122
+ "layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
123
+ "layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
124
+ "layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
125
+ "layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
126
+ "layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
127
+ "layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
128
+ "layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
130
+ "layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
131
+ "layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
132
+ "layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
133
+ "layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
134
+ "layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
135
+ "layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
136
+ "layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
137
+ "layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
138
+ "layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
139
+ "layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
145
+ "layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
148
+ "layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
150
+ "layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
151
+ "layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
152
+ "layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
153
+ "layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
154
+ "layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
155
+ "layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
156
+ "layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
157
+ "layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
158
+ "layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
159
+ "layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
167
+ "layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
168
+ "layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
169
+ "layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
170
+ "layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
171
+ "layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
172
+ "layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
173
+ "layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
174
+ "layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
175
+ "layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
176
+ "layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
178
+ "layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
179
+ "layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
180
+ "layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
181
+ "layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
182
+ "layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
183
+ "layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
185
+ "layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
186
+ "layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
187
+ "layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
189
+ "layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
190
+ "layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
191
+ "layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
192
+ "layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
193
+ "layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
194
+ "layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
196
+ "layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
197
+ "layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
198
+ "layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
199
+ "layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
200
+ "layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
201
+ "layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
202
+ "layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
203
+ "layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
204
+ "layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
205
+ "layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
206
+ "layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
207
+ "layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
208
+ "layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
209
+ "layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
210
+ "layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
211
+ "layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
+ "layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
+ "layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
214
+ "layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
215
+ "layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
216
+ "layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
218
+ "layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
219
+ "layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
220
+ "layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
221
+ "layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
222
+ "layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
223
+ "layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
224
+ "layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
225
+ "layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
226
+ "layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
227
+ "layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
229
+ "layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
230
+ "layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
231
+ "layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
232
+ "layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
233
+ "layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
234
+ "layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
235
+ "layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
236
+ "layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
237
+ "layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
238
+ "layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
239
+ "layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
240
+ "layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
241
+ "layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
242
+ "layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
243
+ "layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
244
+ "layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
245
+ "layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
246
+ "layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
247
+ "layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
248
+ "layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
249
+ "layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
250
+ "layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
251
+ "layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
252
+ "layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
253
+ "layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
254
+ "layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
255
+ "layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
256
+ "layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
257
+ "layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
258
+ "layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
259
+ "layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
266
+ "layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
269
+ "layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
277
+ "layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
280
+ "layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
282
+ "layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
283
+ "layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
284
+ "layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
285
+ "layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
286
+ "layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
287
+ "layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
288
+ "layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
289
+ "layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
290
+ "layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
291
+ "layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
292
+ "layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
293
+ "layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
294
+ "layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
295
+ "layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
296
+ "layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
297
+ "layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
298
+ "layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
299
+ "layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
300
+ "layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
301
+ "layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
302
+ "layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
303
+ "layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
304
+ "layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
305
+ "layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
306
+ "layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
307
+ "layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
308
+ "layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
309
+ "layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
310
+ "layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
311
+ "layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
312
+ "layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
313
+ "layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
314
+ "layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
315
+ "layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
316
+ "layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
317
+ "layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
318
+ "layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
319
+ "layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
320
+ "layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
321
+ "layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
322
+ "layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
323
+ "layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
324
+ "layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
325
+ "layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
326
+ "layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
327
+ "layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
328
+ "layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
329
+ "layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
330
+ "layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
331
+ "layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
332
+ "layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
333
+ "layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
334
+ "layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
335
+ "layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
336
+ "layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
337
+ "layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
338
+ "layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
339
+ "layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
340
+ "layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
341
+ "layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
342
+ "layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
343
+ "layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
344
+ "layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
345
+ "layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
346
+ "layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
347
+ "layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
348
+ "layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
349
+ "layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
350
+ "layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
351
+ "layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
352
+ "layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
353
+ "layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
354
+ "layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
355
+ "layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
356
+ "layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
357
+ "layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
358
+ "layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
359
+ "norm.weight": "model-00002-of-00002.safetensors"
360
+ }
361
+ }
modeling_utu-liger.py ADDED
@@ -0,0 +1,918 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ from functools import partial
21
+ from typing import Callable, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
29
+ from transformers.generation import GenerationMixin
30
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
31
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ QuestionAnsweringModelOutput,
36
+ SequenceClassifierOutputWithPast,
37
+ TokenClassifierOutput,
38
+ )
39
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
40
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
41
+ from transformers.processing_utils import Unpack
42
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
43
+ from transformers.utils import (
44
+ LossKwargs,
45
+ add_code_sample_docstrings,
46
+ add_start_docstrings,
47
+ add_start_docstrings_to_model_forward,
48
+ can_return_tuple,
49
+ is_torch_flex_attn_available,
50
+ logging,
51
+ replace_return_docstrings,
52
+ )
53
+ from transformers.utils.deprecation import deprecate_kwarg
54
+ from .configuration_utu import UTUConfig
55
+
56
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
57
+ from liger_kernel.transformers.rms_norm import LigerRMSNorm
58
+ from liger_kernel.transformers.rope import liger_rotary_pos_emb
59
+ from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
60
+
61
+ if is_torch_flex_attn_available():
62
+ from torch.nn.attention.flex_attention import BlockMask
63
+
64
+ from transformers.integrations.flex_attention import make_flex_block_causal_mask
65
+
66
+
67
+ logger = logging.get_logger(__name__)
68
+
69
+ _CHECKPOINT_FOR_DOC = "tencent-youtu/utu-2b"
70
+ _CONFIG_FOR_DOC = "UTUConfig"
71
+
72
+
73
+ def fixed_cross_entropy(shift_hidden_states, shift_labels, lm_head_weights, num_items_in_batch=None, ignore_index=-100, **kwargs):
74
+ reduction = "sum" if num_items_in_batch is not None else "mean"
75
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction, ignore_index=ignore_index)
76
+ loss = lce(lm_head_weights, shift_hidden_states, shift_labels)
77
+ if reduction == "sum":
78
+ loss = loss / num_items_in_batch
79
+ return loss
80
+
81
+
82
+ def ForCausalLMLoss(
83
+ hidden_states, labels, lm_head_weights, hidden_size, vocab_size, num_items_in_batch=None, ignore_index=-100, **kwargs
84
+ ):
85
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
86
+ shift_labels = labels[..., 1:].contiguous()
87
+
88
+ # flatten tokens
89
+ shift_hidden_states = shift_hidden_states.view(-1, hidden_size)
90
+ shift_labels = shift_labels.view(-1)
91
+
92
+ loss = fixed_cross_entropy(shift_hidden_states=shift_hidden_states, shift_labels=shift_labels, lm_head_weights=lm_head_weights,
93
+ num_items_in_batch=num_items_in_batch, ignore_index=ignore_index, **kwargs)
94
+ return loss
95
+
96
+
97
+ class UTURMSNorm(nn.Module):
98
+ def __init__(self, hidden_size, eps=1e-6):
99
+ """
100
+ UTURMSNorm is equivalent to T5LayerNorm
101
+ """
102
+ super().__init__()
103
+ self.weight = nn.Parameter(torch.ones(hidden_size))
104
+ self.variance_epsilon = eps
105
+
106
+ def forward(self, hidden_states):
107
+ input_dtype = hidden_states.dtype
108
+ hidden_states = hidden_states.to(torch.float32)
109
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
110
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
111
+ return self.weight * hidden_states.to(input_dtype)
112
+
113
+ def extra_repr(self):
114
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
115
+
116
+
117
+ # ALL_LAYERNORM_LAYERS.append(UTURMSNorm)
118
+ ALL_LAYERNORM_LAYERS.append(LigerRMSNorm)
119
+
120
+
121
+ class UTURotaryEmbedding(nn.Module):
122
+ def __init__(self, config: UTUConfig, device=None):
123
+ super().__init__()
124
+ # BC: "rope_type" was originally "type"
125
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
126
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
127
+ else:
128
+ self.rope_type = "default"
129
+ self.max_seq_len_cached = config.max_position_embeddings
130
+ self.original_max_seq_len = config.max_position_embeddings
131
+
132
+ self.config = config
133
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
134
+
135
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
136
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
137
+ self.original_inv_freq = self.inv_freq
138
+
139
+ @torch.no_grad()
140
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
141
+ def forward(self, x, position_ids):
142
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
143
+ position_ids_expanded = position_ids[:, None, :].float()
144
+
145
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
146
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
147
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
148
+ emb = torch.cat((freqs, freqs), dim=-1)
149
+ cos = emb.cos() * self.attention_scaling
150
+ sin = emb.sin() * self.attention_scaling
151
+
152
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
153
+
154
+
155
+ def rotate_half(x):
156
+ """Rotates half the hidden dims of the input."""
157
+ x1 = x[..., : x.shape[-1] // 2]
158
+ x2 = x[..., x.shape[-1] // 2 :]
159
+ return torch.cat((-x2, x1), dim=-1)
160
+
161
+
162
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
163
+ """Applies Rotary Position Embedding to the query and key tensors.
164
+
165
+ Args:
166
+ q (`torch.Tensor`): The query tensor.
167
+ k (`torch.Tensor`): The key tensor.
168
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
169
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
170
+ position_ids (`torch.Tensor`, *optional*):
171
+ Deprecated and unused.
172
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
173
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
174
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
175
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
176
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
177
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
178
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
179
+ Returns:
180
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
181
+ """
182
+ cos = cos.unsqueeze(unsqueeze_dim)
183
+ sin = sin.unsqueeze(unsqueeze_dim)
184
+ q_embed = (q * cos) + (rotate_half(q) * sin)
185
+ k_embed = (k * cos) + (rotate_half(k) * sin)
186
+ return q_embed, k_embed
187
+
188
+
189
+ class UTUMLP(nn.Module):
190
+ def __init__(self, config):
191
+ super().__init__()
192
+ self.config = config
193
+ self.hidden_size = config.hidden_size
194
+ self.intermediate_size = config.intermediate_size
195
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
196
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
197
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
198
+ self.act_fn = ACT2FN[config.hidden_act]
199
+
200
+ def forward(self, x):
201
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
202
+ return down_proj
203
+
204
+
205
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
206
+ """
207
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
208
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
209
+ """
210
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
211
+ if n_rep == 1:
212
+ return hidden_states
213
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
214
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
215
+
216
+
217
+ def eager_attention_forward(
218
+ module: nn.Module,
219
+ query: torch.Tensor,
220
+ key: torch.Tensor,
221
+ value: torch.Tensor,
222
+ attention_mask: Optional[torch.Tensor],
223
+ scaling: float,
224
+ dropout: float = 0.0,
225
+ **kwargs,
226
+ ):
227
+ key_states = repeat_kv(key, module.num_key_value_groups)
228
+ value_states = repeat_kv(value, module.num_key_value_groups)
229
+
230
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
231
+ if attention_mask is not None:
232
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
233
+ attn_weights = attn_weights + causal_mask
234
+
235
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
236
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
237
+ attn_output = torch.matmul(attn_weights, value_states)
238
+ attn_output = attn_output.transpose(1, 2).contiguous()
239
+
240
+ return attn_output, attn_weights
241
+
242
+
243
+ class UTUAttention(nn.Module):
244
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
245
+
246
+ def __init__(self, config: UTUConfig, layer_idx: int):
247
+ super().__init__()
248
+ self.config = config
249
+ self.layer_idx = layer_idx
250
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
251
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
252
+ self.scaling = self.head_dim**-0.5
253
+ self.attention_dropout = config.attention_dropout
254
+ self.is_causal = True
255
+
256
+ self.q_proj = nn.Linear(
257
+ config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
258
+ )
259
+ self.k_proj = nn.Linear(
260
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
261
+ )
262
+ self.v_proj = nn.Linear(
263
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
264
+ )
265
+ self.o_proj = nn.Linear(
266
+ config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
267
+ )
268
+ self.q_norm = LigerRMSNorm(self.head_dim, config.rms_norm_eps)
269
+ self.k_norm = LigerRMSNorm(self.head_dim, config.rms_norm_eps)
270
+
271
+ def forward(
272
+ self,
273
+ hidden_states: torch.Tensor,
274
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
275
+ attention_mask: Optional[torch.Tensor],
276
+ past_key_value: Optional[Cache] = None,
277
+ cache_position: Optional[torch.LongTensor] = None,
278
+ **kwargs: Unpack[FlashAttentionKwargs],
279
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
280
+ input_shape = hidden_states.shape[:-1]
281
+ hidden_shape = (*input_shape, -1, self.head_dim)
282
+
283
+ query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
284
+ key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
285
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
286
+
287
+ cos, sin = position_embeddings
288
+ query_states, key_states = liger_rotary_pos_emb(query_states, key_states, cos, sin)
289
+
290
+ if past_key_value is not None:
291
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
292
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
293
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
294
+
295
+ attention_interface: Callable = eager_attention_forward
296
+ if self.config._attn_implementation != "eager":
297
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
298
+ logger.warning_once(
299
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
300
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
301
+ )
302
+ else:
303
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
304
+
305
+ attn_output, attn_weights = attention_interface(
306
+ self,
307
+ query_states,
308
+ key_states,
309
+ value_states,
310
+ attention_mask,
311
+ dropout=0.0 if not self.training else self.attention_dropout,
312
+ scaling=self.scaling,
313
+ **kwargs,
314
+ )
315
+
316
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
317
+ attn_output = self.o_proj(attn_output)
318
+ return attn_output, attn_weights
319
+
320
+
321
+ class UTUDecoderLayer(nn.Module):
322
+ def __init__(self, config: UTUConfig, layer_idx: int):
323
+ super().__init__()
324
+ self.hidden_size = config.hidden_size
325
+
326
+ self.self_attn = UTUAttention(config=config, layer_idx=layer_idx)
327
+
328
+ self.mlp = LigerSwiGLUMLP(config)
329
+ self.input_layernorm = LigerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
330
+ self.post_attention_layernorm = LigerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
331
+
332
+ def forward(
333
+ self,
334
+ hidden_states: torch.Tensor,
335
+ attention_mask: Optional[torch.Tensor] = None,
336
+ position_ids: Optional[torch.LongTensor] = None,
337
+ past_key_value: Optional[Cache] = None,
338
+ output_attentions: Optional[bool] = False,
339
+ use_cache: Optional[bool] = False,
340
+ cache_position: Optional[torch.LongTensor] = None,
341
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
342
+ **kwargs: Unpack[FlashAttentionKwargs],
343
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
344
+ residual = hidden_states
345
+
346
+ hidden_states = self.input_layernorm(hidden_states)
347
+
348
+ # Self Attention
349
+ hidden_states, self_attn_weights = self.self_attn(
350
+ hidden_states=hidden_states,
351
+ attention_mask=attention_mask,
352
+ position_ids=position_ids,
353
+ past_key_value=past_key_value,
354
+ output_attentions=output_attentions,
355
+ use_cache=use_cache,
356
+ cache_position=cache_position,
357
+ position_embeddings=position_embeddings,
358
+ **kwargs,
359
+ )
360
+ hidden_states = residual + hidden_states
361
+
362
+ # Fully Connected
363
+ residual = hidden_states
364
+ hidden_states = self.post_attention_layernorm(hidden_states)
365
+ hidden_states = self.mlp(hidden_states)
366
+ hidden_states = residual + hidden_states
367
+
368
+ outputs = (hidden_states,)
369
+ if output_attentions:
370
+ outputs += (self_attn_weights,)
371
+
372
+ return outputs
373
+
374
+
375
+ UTU_START_DOCSTRING = r"""
376
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
377
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
378
+ etc.)
379
+
380
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
381
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
382
+ and behavior.
383
+
384
+ Parameters:
385
+ config ([`UTUConfig`]):
386
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
387
+ load the weights associated with the model, only the configuration. Check out the
388
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
389
+ """
390
+
391
+
392
+ @add_start_docstrings(
393
+ "The bare UTU Model outputting raw hidden-states without any specific head on top.",
394
+ UTU_START_DOCSTRING,
395
+ )
396
+ class UTUPreTrainedModel(PreTrainedModel):
397
+ config_class = UTUConfig
398
+ base_model_prefix = "model"
399
+ supports_gradient_checkpointing = True
400
+ _no_split_modules = ["UTUDecoderLayer"]
401
+ _skip_keys_device_placement = ["past_key_values"]
402
+ _supports_flash_attn_2 = True
403
+ _supports_sdpa = True
404
+ _supports_flex_attn = True
405
+ _supports_cache_class = True
406
+ _supports_quantized_cache = True
407
+ _supports_static_cache = True
408
+ _supports_attention_backend = True
409
+
410
+ def init_weights(self):
411
+ """
412
+ If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
413
+ initialization logic in `_init_weights`.
414
+ """
415
+ # Prune heads if needed
416
+ if self.config.pruned_heads:
417
+ self.prune_heads(self.config.pruned_heads)
418
+
419
+ if "-init" in self.name_or_path:
420
+ # Initialize weights
421
+ self.apply(self._initialize_weights)
422
+
423
+ # Adjust weights of o_proj in Attention and down_proj in MLP
424
+ for name, module in self.named_modules():
425
+ if "o_proj" in name or "down_proj" in name:
426
+ # For the output projection, we reinitialize the weights
427
+ scaled_std = self.config.initializer_range * (1.0 / self.config.num_hidden_layers) ** 0.5
428
+ module.weight.data.normal_(mean=0.0, std=scaled_std)
429
+
430
+ # Tie weights should be skipped when not initializing all weights
431
+ # since from_pretrained(...) calls tie weights anyways
432
+ self.tie_weights()
433
+
434
+ def _init_weights(self, module):
435
+ std = self.config.initializer_range
436
+ embedding_std = self.config.embedding_initializer_range
437
+ if isinstance(module, nn.Linear):
438
+ module.weight.data.normal_(mean=0.0, std=std)
439
+ if module.bias is not None:
440
+ module.bias.data.zero_()
441
+ elif isinstance(module, nn.Embedding):
442
+ module.weight.data.normal_(mean=0.0, std=embedding_std)
443
+ if module.padding_idx is not None:
444
+ module.weight.data[module.padding_idx].zero_()
445
+ elif isinstance(module, UTURMSNorm) or isinstance(module, LigerRMSNorm):
446
+ module.weight.data.fill_(1.0)
447
+
448
+
449
+ UTU_INPUTS_DOCSTRING = r"""
450
+ Args:
451
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
452
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
453
+ it.
454
+
455
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
456
+ [`PreTrainedTokenizer.__call__`] for details.
457
+
458
+ [What are input IDs?](../glossary#input-ids)
459
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
460
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
461
+
462
+ - 1 for tokens that are **not masked**,
463
+ - 0 for tokens that are **masked**.
464
+
465
+ [What are attention masks?](../glossary#attention-mask)
466
+
467
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
468
+ [`PreTrainedTokenizer.__call__`] for details.
469
+
470
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
471
+ `past_key_values`).
472
+
473
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
474
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
475
+ information on the default strategy.
476
+
477
+ - 1 indicates the head is **not masked**,
478
+ - 0 indicates the head is **masked**.
479
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
480
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
481
+ config.n_positions - 1]`.
482
+
483
+ [What are position IDs?](../glossary#position-ids)
484
+ past_key_values (`Cache`, *optional*):
485
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
486
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
487
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
488
+
489
+ It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
490
+
491
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
492
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
493
+ of shape `(batch_size, sequence_length)`.
494
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
495
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
496
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
497
+ model's internal embedding lookup matrix.
498
+ use_cache (`bool`, *optional*):
499
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
500
+ `past_key_values`).
501
+ output_attentions (`bool`, *optional*):
502
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
503
+ tensors for more detail.
504
+ output_hidden_states (`bool`, *optional*):
505
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
506
+ more detail.
507
+ return_dict (`bool`, *optional*):
508
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
509
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
510
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
511
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
512
+ the complete sequence length.
513
+ """
514
+
515
+
516
+ @add_start_docstrings(
517
+ "The bare UTU Model outputting raw hidden-states without any specific head on top.",
518
+ UTU_START_DOCSTRING,
519
+ )
520
+ class UTUModel(UTUPreTrainedModel):
521
+ """
522
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`UTUDecoderLayer`]
523
+
524
+ Args:
525
+ config: UTUConfig
526
+ """
527
+
528
+ def __init__(self, config: UTUConfig):
529
+ super().__init__(config)
530
+ self.padding_idx = config.pad_token_id
531
+ self.vocab_size = config.vocab_size
532
+
533
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
534
+ self.layers = nn.ModuleList(
535
+ [UTUDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
536
+ )
537
+ self.norm = LigerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
538
+ self.rotary_emb = UTURotaryEmbedding(config=config)
539
+ self.gradient_checkpointing = False
540
+
541
+ # Initialize weights and apply final processing
542
+ self.post_init()
543
+
544
+ def get_input_embeddings(self):
545
+ return self.embed_tokens
546
+
547
+ def set_input_embeddings(self, value):
548
+ self.embed_tokens = value
549
+
550
+ @can_return_tuple
551
+ @add_start_docstrings_to_model_forward(UTU_INPUTS_DOCSTRING)
552
+ def forward(
553
+ self,
554
+ input_ids: Optional[torch.LongTensor] = None,
555
+ attention_mask: Optional[torch.Tensor] = None,
556
+ position_ids: Optional[torch.LongTensor] = None,
557
+ past_key_values: Optional[Cache] = None,
558
+ inputs_embeds: Optional[torch.FloatTensor] = None,
559
+ use_cache: Optional[bool] = None,
560
+ output_attentions: Optional[bool] = None,
561
+ output_hidden_states: Optional[bool] = None,
562
+ cache_position: Optional[torch.LongTensor] = None,
563
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
564
+ ) -> BaseModelOutputWithPast:
565
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
566
+ output_hidden_states = (
567
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
568
+ )
569
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
570
+
571
+ if (input_ids is None) ^ (inputs_embeds is not None):
572
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
573
+
574
+ if self.gradient_checkpointing and self.training and use_cache:
575
+ logger.warning_once(
576
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
577
+ )
578
+ use_cache = False
579
+
580
+ # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
581
+ if not isinstance(past_key_values, (type(None), Cache)):
582
+ raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
583
+
584
+ if inputs_embeds is None:
585
+ inputs_embeds = self.embed_tokens(input_ids)
586
+
587
+ if use_cache and past_key_values is None:
588
+ past_key_values = DynamicCache()
589
+
590
+ if cache_position is None:
591
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
592
+ cache_position = torch.arange(
593
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
594
+ )
595
+
596
+ if position_ids is None:
597
+ position_ids = cache_position.unsqueeze(0)
598
+
599
+ causal_mask = self._update_causal_mask(
600
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
601
+ )
602
+
603
+ hidden_states = inputs_embeds
604
+
605
+ # create position embeddings to be shared across the decoder layers
606
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
607
+
608
+ # decoder layers
609
+ all_hidden_states = () if output_hidden_states else None
610
+ all_self_attns = () if output_attentions else None
611
+
612
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
613
+ if output_hidden_states:
614
+ all_hidden_states += (hidden_states,)
615
+
616
+ if self.gradient_checkpointing and self.training:
617
+ layer_outputs = self._gradient_checkpointing_func(
618
+ partial(decoder_layer.__call__, **flash_attn_kwargs),
619
+ hidden_states,
620
+ causal_mask,
621
+ position_ids,
622
+ past_key_values,
623
+ output_attentions,
624
+ use_cache,
625
+ cache_position,
626
+ position_embeddings,
627
+ )
628
+ else:
629
+ layer_outputs = decoder_layer(
630
+ hidden_states,
631
+ attention_mask=causal_mask,
632
+ position_ids=position_ids,
633
+ past_key_value=past_key_values,
634
+ output_attentions=output_attentions,
635
+ use_cache=use_cache,
636
+ cache_position=cache_position,
637
+ position_embeddings=position_embeddings,
638
+ **flash_attn_kwargs,
639
+ )
640
+
641
+ hidden_states = layer_outputs[0]
642
+
643
+ if output_attentions:
644
+ all_self_attns += (layer_outputs[1],)
645
+
646
+ hidden_states = self.norm(hidden_states)
647
+
648
+ # add hidden states from the last decoder layer
649
+ if output_hidden_states:
650
+ all_hidden_states += (hidden_states,)
651
+
652
+ return BaseModelOutputWithPast(
653
+ last_hidden_state=hidden_states,
654
+ past_key_values=past_key_values if use_cache else None,
655
+ hidden_states=all_hidden_states,
656
+ attentions=all_self_attns,
657
+ )
658
+
659
+ def _update_causal_mask(
660
+ self,
661
+ attention_mask: torch.Tensor,
662
+ input_tensor: torch.Tensor,
663
+ cache_position: torch.Tensor,
664
+ past_key_values: Cache,
665
+ output_attentions: bool = False,
666
+ ):
667
+ if self.config._attn_implementation == "flash_attention_2":
668
+ if attention_mask is not None and (attention_mask == 0.0).any():
669
+ return attention_mask
670
+ return None
671
+ if self.config._attn_implementation == "flex_attention":
672
+ if isinstance(attention_mask, torch.Tensor):
673
+ attention_mask = make_flex_block_causal_mask(attention_mask)
674
+ if isinstance(attention_mask, BlockMask):
675
+ return attention_mask
676
+
677
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
678
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
679
+ # to infer the attention mask.
680
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
681
+ using_static_cache = isinstance(past_key_values, StaticCache)
682
+
683
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
684
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
685
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
686
+ attention_mask,
687
+ inputs_embeds=input_tensor,
688
+ past_key_values_length=past_seen_tokens,
689
+ is_training=self.training,
690
+ ):
691
+ return None
692
+
693
+ dtype, device = input_tensor.dtype, input_tensor.device
694
+ sequence_length = input_tensor.shape[1]
695
+ if using_static_cache:
696
+ target_length = past_key_values.get_max_cache_shape()
697
+ else:
698
+ target_length = (
699
+ attention_mask.shape[-1]
700
+ if isinstance(attention_mask, torch.Tensor)
701
+ else past_seen_tokens + sequence_length + 1
702
+ )
703
+
704
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
705
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
706
+ attention_mask,
707
+ sequence_length=sequence_length,
708
+ target_length=target_length,
709
+ dtype=dtype,
710
+ device=device,
711
+ cache_position=cache_position,
712
+ batch_size=input_tensor.shape[0],
713
+ )
714
+
715
+ if (
716
+ self.config._attn_implementation == "sdpa"
717
+ and attention_mask is not None
718
+ and attention_mask.device.type in ["cuda", "xpu"]
719
+ and not output_attentions
720
+ ):
721
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
722
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
723
+ # Details: https://github.com/pytorch/pytorch/issues/110213
724
+ min_dtype = torch.finfo(dtype).min
725
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
726
+
727
+ return causal_mask
728
+
729
+ @staticmethod
730
+ def _prepare_4d_causal_attention_mask_with_cache_position(
731
+ attention_mask: torch.Tensor,
732
+ sequence_length: int,
733
+ target_length: int,
734
+ dtype: torch.dtype,
735
+ device: torch.device,
736
+ cache_position: torch.Tensor,
737
+ batch_size: int,
738
+ **kwargs,
739
+ ):
740
+ """
741
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
742
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
743
+
744
+ Args:
745
+ attention_mask (`torch.Tensor`):
746
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
747
+ `(batch_size, 1, query_length, key_value_length)`.
748
+ sequence_length (`int`):
749
+ The sequence length being processed.
750
+ target_length (`int`):
751
+ The target length: when generating with static cache, the mask should be as long as the static cache,
752
+ to account for the 0 padding, the part of the cache that is not filled yet.
753
+ dtype (`torch.dtype`):
754
+ The dtype to use for the 4D attention mask.
755
+ device (`torch.device`):
756
+ The device to place the 4D attention mask on.
757
+ cache_position (`torch.Tensor`):
758
+ Indices depicting the position of the input sequence tokens in the sequence.
759
+ batch_size (`torch.Tensor`):
760
+ Batch size.
761
+ """
762
+ if attention_mask is not None and attention_mask.dim() == 4:
763
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
764
+ causal_mask = attention_mask
765
+ else:
766
+ min_dtype = torch.finfo(dtype).min
767
+ causal_mask = torch.full(
768
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
769
+ )
770
+ if sequence_length != 1:
771
+ causal_mask = torch.triu(causal_mask, diagonal=1)
772
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
773
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
774
+ if attention_mask is not None:
775
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
776
+ mask_length = attention_mask.shape[-1]
777
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
778
+ causal_mask.device
779
+ )
780
+ padding_mask = padding_mask == 0
781
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
782
+ padding_mask, min_dtype
783
+ )
784
+
785
+ return causal_mask
786
+
787
+
788
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
789
+
790
+
791
+ class UTUForCausalLM(UTUPreTrainedModel, GenerationMixin):
792
+ _tied_weights_keys = ["lm_head.weight"]
793
+ _tp_plan = {"lm_head": "colwise_rep"}
794
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
795
+
796
+ def __init__(self, config):
797
+ super().__init__(config)
798
+ self.model = UTUModel(config)
799
+ self.vocab_size = config.vocab_size
800
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
801
+
802
+ # Initialize weights and apply final processing
803
+ self.post_init()
804
+
805
+ def get_input_embeddings(self):
806
+ return self.model.embed_tokens
807
+
808
+ def set_input_embeddings(self, value):
809
+ self.model.embed_tokens = value
810
+
811
+ def get_output_embeddings(self):
812
+ return self.lm_head
813
+
814
+ def set_output_embeddings(self, new_embeddings):
815
+ self.lm_head = new_embeddings
816
+
817
+ def set_decoder(self, decoder):
818
+ self.model = decoder
819
+
820
+ def get_decoder(self):
821
+ return self.model
822
+
823
+ @can_return_tuple
824
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
825
+ @add_start_docstrings_to_model_forward(UTU_INPUTS_DOCSTRING)
826
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
827
+ def forward(
828
+ self,
829
+ input_ids: Optional[torch.LongTensor] = None,
830
+ attention_mask: Optional[torch.Tensor] = None,
831
+ position_ids: Optional[torch.LongTensor] = None,
832
+ past_key_values: Optional[Cache] = None,
833
+ inputs_embeds: Optional[torch.FloatTensor] = None,
834
+ labels: Optional[torch.LongTensor] = None,
835
+ use_cache: Optional[bool] = None,
836
+ output_attentions: Optional[bool] = None,
837
+ output_hidden_states: Optional[bool] = None,
838
+ cache_position: Optional[torch.LongTensor] = None,
839
+ logits_to_keep: Union[int, torch.Tensor] = 0,
840
+ **kwargs: Unpack[KwargsForCausalLM],
841
+ ) -> CausalLMOutputWithPast:
842
+ r"""
843
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
844
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
845
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
846
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
847
+
848
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
849
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
850
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
851
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
852
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
853
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
854
+
855
+ Returns:
856
+
857
+ Example:
858
+
859
+ ```python
860
+ >>> from transformers import AutoTokenizer, UTUForCausalLM
861
+
862
+ >>> model = UTUForCausalLM.from_pretrained("meta-UTU/UTU-2-7b-hf")
863
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-UTU/UTU-2-7b-hf")
864
+
865
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
866
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
867
+
868
+ >>> # Generate
869
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
870
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
871
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
872
+ ```"""
873
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
874
+ output_hidden_states = (
875
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
876
+ )
877
+
878
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
879
+ outputs: BaseModelOutputWithPast = self.model(
880
+ input_ids=input_ids,
881
+ attention_mask=attention_mask,
882
+ position_ids=position_ids,
883
+ past_key_values=past_key_values,
884
+ inputs_embeds=inputs_embeds,
885
+ use_cache=use_cache,
886
+ output_attentions=output_attentions,
887
+ output_hidden_states=output_hidden_states,
888
+ cache_position=cache_position,
889
+ **kwargs,
890
+ )
891
+
892
+ hidden_states = outputs.last_hidden_state
893
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
894
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
895
+ if self.training:
896
+ logits = None
897
+ else:
898
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
899
+
900
+ loss = None
901
+ if labels is not None:
902
+ loss = ForCausalLMLoss(hidden_states=hidden_states[:, slice_indices, :], labels=labels, lm_head_weights=self.lm_head.weight,
903
+ hidden_size=self.config.hidden_size, vocab_size=self.config.vocab_size, **kwargs)
904
+
905
+ return CausalLMOutputWithPast(
906
+ loss=loss,
907
+ logits=logits,
908
+ past_key_values=outputs.past_key_values,
909
+ hidden_states=outputs.hidden_states,
910
+ attentions=outputs.attentions,
911
+ )
912
+
913
+
914
+ __all__ = [
915
+ "UTUForCausalLM",
916
+ "UTUModel",
917
+ "UTUPreTrainedModel"
918
+ ]
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
tokenizer_config.json ADDED
@@ -0,0 +1,2070 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "clean_up_tokenization_spaces": true,
2054
+ "eos_token": "<|end_of_text|>",
2055
+ "extra_special_tokens": {},
2056
+ "max_length": 128,
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 1024,
2062
+ "pad_to_multiple_of": null,
2063
+ "pad_token": "<|end_of_text|>",
2064
+ "pad_token_type_id": 0,
2065
+ "padding_side": "right",
2066
+ "stride": 0,
2067
+ "tokenizer_class": "PreTrainedTokenizer",
2068
+ "truncation_side": "left",
2069
+ "truncation_strategy": "longest_first"
2070
+ }