tensense commited on
Commit
4e909c7
·
verified ·
1 Parent(s): ccd4038

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .DS_Store +0 -0
  2. .gitattributes +5 -0
  3. Makefile +44 -0
  4. README.md +0 -4
  5. config/deepspeed_zero3.json +38 -0
  6. config/default_config.yaml +87 -0
  7. data/.DS_Store +0 -0
  8. data/repository_analysis.json +0 -0
  9. data/training_data/metadata.json +15 -0
  10. data/training_data/test.jsonl +44 -0
  11. data/training_data/train.jsonl +0 -0
  12. data/training_data/val.jsonl +44 -0
  13. output/.DS_Store +0 -0
  14. output/finetuned_model/all_results.json +12 -0
  15. output/finetuned_model/checkpoint-100/README.md +207 -0
  16. output/finetuned_model/checkpoint-100/adapter_config.json +42 -0
  17. output/finetuned_model/checkpoint-100/adapter_model.safetensors +3 -0
  18. output/finetuned_model/checkpoint-100/added_tokens.json +28 -0
  19. output/finetuned_model/checkpoint-100/chat_template.jinja +89 -0
  20. output/finetuned_model/checkpoint-100/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  21. output/finetuned_model/checkpoint-100/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  22. output/finetuned_model/checkpoint-100/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  23. output/finetuned_model/checkpoint-100/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  24. output/finetuned_model/checkpoint-100/latest +1 -0
  25. output/finetuned_model/checkpoint-100/merges.txt +0 -0
  26. output/finetuned_model/checkpoint-100/rng_state_0.pth +3 -0
  27. output/finetuned_model/checkpoint-100/rng_state_1.pth +3 -0
  28. output/finetuned_model/checkpoint-100/scheduler.pt +3 -0
  29. output/finetuned_model/checkpoint-100/special_tokens_map.json +31 -0
  30. output/finetuned_model/checkpoint-100/tokenizer.json +3 -0
  31. output/finetuned_model/checkpoint-100/tokenizer_config.json +240 -0
  32. output/finetuned_model/checkpoint-100/trainer_state.json +119 -0
  33. output/finetuned_model/checkpoint-100/training_args.bin +3 -0
  34. output/finetuned_model/checkpoint-100/vocab.json +0 -0
  35. output/finetuned_model/checkpoint-100/zero_to_fp32.py +760 -0
  36. output/finetuned_model/checkpoint-165/README.md +207 -0
  37. output/finetuned_model/checkpoint-165/adapter_config.json +42 -0
  38. output/finetuned_model/checkpoint-165/adapter_model.safetensors +3 -0
  39. output/finetuned_model/checkpoint-165/added_tokens.json +28 -0
  40. output/finetuned_model/checkpoint-165/chat_template.jinja +89 -0
  41. output/finetuned_model/checkpoint-165/global_step165/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  42. output/finetuned_model/checkpoint-165/global_step165/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  43. output/finetuned_model/checkpoint-165/global_step165/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  44. output/finetuned_model/checkpoint-165/global_step165/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  45. output/finetuned_model/checkpoint-165/latest +1 -0
  46. output/finetuned_model/checkpoint-165/merges.txt +0 -0
  47. output/finetuned_model/checkpoint-165/rng_state_0.pth +3 -0
  48. output/finetuned_model/checkpoint-165/rng_state_1.pth +3 -0
  49. output/finetuned_model/checkpoint-165/scheduler.pt +3 -0
  50. output/finetuned_model/checkpoint-165/special_tokens_map.json +31 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ output/finetuned_model/checkpoint-100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ output/finetuned_model/checkpoint-165/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ output/finetuned_model/checkpoint-33/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ output/finetuned_model/final_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ output/finetuned_model/merged_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
Makefile ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Makefile
2
+ .PHONY: all config analyze generate train merge evaluate clean
3
+
4
+ all: config analyze generate train merge evaluate
5
+
6
+ config:
7
+ @echo "Step 0: Updating configuration..."
8
+ python utils/config_manager.py
9
+
10
+ analyze:
11
+ @echo "Step 1: Analyzing repository..."
12
+ python scripts/01_analyze_repo.py
13
+
14
+ generate:
15
+ @echo "Step 2: Generating training data..."
16
+ python scripts/02_generate_data.py
17
+
18
+ train:
19
+ @echo "Step 3: Fine-tuning model..."
20
+ deepspeed --num_gpus=2 scripts/03_train_model.py
21
+
22
+ merge:
23
+ @echo "Step 4: Merging LoRA weights..."
24
+ python scripts/04_merge_weights.py
25
+
26
+ evaluate:
27
+ @echo "Step 5: Evaluating model..."
28
+ python scripts/05_evaluate.py
29
+
30
+ clean:
31
+ @echo "Cleaning output files..."
32
+ rm -rf output/finetuned_model/checkpoints/*
33
+ rm -rf data/training_data/*
34
+
35
+ help:
36
+ @echo "Available targets:"
37
+ @echo " make all - Run complete pipeline"
38
+ @echo " make config - Update repository config"
39
+ @echo " make analyze - Analyze code repository"
40
+ @echo " make generate - Generate training data"
41
+ @echo " make train - Fine-tune model"
42
+ @echo " make merge - Merge LoRA weights"
43
+ @echo " make evaluate - Evaluate model"
44
+ @echo " make clean - Clean output files"
README.md CHANGED
@@ -1143,7 +1143,3 @@ python scripts/05_evaluate.py --quick-eval
1143
  - 企业内部代码助手
1144
  - 开源项目文档生成
1145
  - 代码审查辅助
1146
-
1147
- ---
1148
- license: mit
1149
- ---
 
1143
  - 企业内部代码助手
1144
  - 开源项目文档生成
1145
  - 代码审查辅助
 
 
 
 
config/deepspeed_zero3.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bf16": {
3
+ "enabled": true
4
+ },
5
+ "zero_optimization": {
6
+ "stage": 3,
7
+ "offload_optimizer": {
8
+ "device": "cpu",
9
+ "pin_memory": true
10
+ },
11
+ "offload_param": {
12
+ "device": "cpu",
13
+ "pin_memory": true
14
+ },
15
+ "overlap_comm": true,
16
+ "contiguous_gradients": true,
17
+ "sub_group_size": 1e9,
18
+ "reduce_bucket_size": "auto",
19
+ "stage3_prefetch_bucket_size": "auto",
20
+ "stage3_param_persistence_threshold": "auto",
21
+ "stage3_max_live_parameters": 1e9,
22
+ "stage3_max_reuse_distance": 1e9,
23
+ "stage3_gather_16bit_weights_on_model_save": true
24
+ },
25
+ "gradient_accumulation_steps": "auto",
26
+ "gradient_clipping": "auto",
27
+ "steps_per_print": 10,
28
+ "train_batch_size": "auto",
29
+ "train_micro_batch_size_per_gpu": "auto",
30
+ "wall_clock_breakdown": false,
31
+ "aio": {
32
+ "block_size": 1048576,
33
+ "queue_depth": 8,
34
+ "thread_count": 1,
35
+ "single_submit": false,
36
+ "overlap_events": true
37
+ }
38
+ }
config/default_config.yaml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data_generation:
2
+ design_proposals:
3
+ count: 100
4
+ requirement_types:
5
+ - 新功能开发
6
+ - 性能优化
7
+ - 架构重构
8
+ - API设计
9
+ - 错误处理
10
+ qa_pairs:
11
+ count: 500
12
+ diversity_threshold: 0.7
13
+ max_code_lines: 40
14
+ min_code_lines: 5
15
+ dataset:
16
+ format: jsonl
17
+ output_dir: ./data/training_data
18
+ test_split: 0.1
19
+ train_split: 0.8
20
+ val_split: 0.1
21
+ evaluation:
22
+ metrics:
23
+ - rouge
24
+ - bleu
25
+ - exact_match
26
+ sample_size: 50
27
+ gpu:
28
+ devices:
29
+ - 0
30
+ - 1
31
+ memory_per_gpu: 48
32
+ llm_api:
33
+ batch_size: 4
34
+ max_workers: 2
35
+ model: Qwen/Qwen3-8B
36
+ provider: local
37
+ model:
38
+ base_model: Qwen/Qwen3-8B
39
+ enable_thinking: true
40
+ max_length: 2048
41
+ temperature: 0.7
42
+ thinking_budget: 4096
43
+ top_p: 0.9
44
+ project:
45
+ name: code_repo_training_data_generator
46
+ version: 1.0.0
47
+ repository:
48
+ exclude_dirs:
49
+ - .git
50
+ - __pycache__
51
+ - node_modules
52
+ - .venv
53
+ - venv
54
+ - build
55
+ - dist
56
+ languages:
57
+ - python
58
+ - markdown
59
+ local_path: ./repos/Laddr
60
+ url: https://github.com/AgnetLabs/Laddr
61
+ training:
62
+ batch_size: 2
63
+ bf16: true
64
+ deepspeed_config: ./deepspeed_config_optimized.json
65
+ eval_steps: 100
66
+ gradient_accumulation_steps: 8
67
+ learning_rate: 1e-3
68
+ logging_steps: 10
69
+ lora:
70
+ alpha: 128
71
+ bias: none
72
+ dropout: 0.05
73
+ r: 64
74
+ target_modules:
75
+ - q_proj
76
+ - k_proj
77
+ - v_proj
78
+ - o_proj
79
+ - gate_proj
80
+ - up_proj
81
+ - down_proj
82
+ max_grad_norm: 1.0
83
+ num_epochs: 3
84
+ output_dir: ./output/finetuned_model
85
+ save_steps: 100
86
+ warmup_ratio: 0.05
87
+ weight_decay: 0.01
data/.DS_Store ADDED
Binary file (6.15 kB). View file
 
data/repository_analysis.json ADDED
The diff for this file is too large to render. See raw diff
 
data/training_data/metadata.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_samples": 440,
3
+ "train_samples": 352,
4
+ "val_samples": 44,
5
+ "test_samples": 44,
6
+ "project_name": "Laddr",
7
+ "task_distribution": {
8
+ "code_explanation": 212,
9
+ "code_location": 75,
10
+ "api_usage": 150,
11
+ "project_structure": 1,
12
+ "project_overview": 1,
13
+ "core_components": 1
14
+ }
15
+ }
data/training_data/test.jsonl ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`_parse_ts` 函数在哪个文件里?"}, {"role": "assistant", "content": "`_parse_ts` 位于 `lib/laddr/src/laddr/api/main.py`。"}]}
2
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`ps` 有什么功能?"}, {"role": "assistant", "content": "`ps` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/commands/management.py`。\n**功能描述**:\nShow status of all services and workers. Examples: laddr ps laddr ps --format json\n**函数签名**:\n```python\ndef ps(format: str):\n```\n**参数**:\n- `format` (str)\n\n**返回值**:`None`"}]}
3
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`run_prompt` 函数在哪个文件里?"}, {"role": "assistant", "content": "`run_prompt` 位于 `lib/laddr/src/laddr/cli/commands/prompt.py`。"}]}
4
+ {"conversations": [{"role": "user", "content": "Laddr 的 `MCPToolSource` 是做什么的?"}, {"role": "assistant", "content": "`MCPToolSource` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/mcp_client.py`。\n**功能描述**:\nPlaceholder - MCP feature disabled for this release.\n**函数签名**:\n```python\nclass MCPToolSource:\n```"}]}
5
+ {"conversations": [{"role": "user", "content": "Laddr 的 `DatabaseService.memory_put` 是做什么的?"}, {"role": "assistant", "content": "`DatabaseService.memory_put` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nStore a memory entry.\n**函数签名**:\n```python\ndef memory_put(self, agent_name: str, key: str, value: Any, job_id: str | None = None) -> None:\n```\n**参数**:\n- `self` (Any)\n- `agent_name` (str)\n- `key` (str)\n- `value` (Any)\n- `job_id` (str | None)\n\n**返回值**:`None`"}]}
6
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`build_image` 有什么功能?"}, {"role": "assistant", "content": "`build_image` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/docker.py`。\n**功能描述**:\nBuild a Docker image. Args: dockerfile: Path to Dockerfile tag: Image tag context: Build context directory Raises: DockerComposeError: If build fails\n**函数签名**:\n```python\ndef build_image(dockerfile: Path, tag: str, context: Path) -> None:\n```\n**参数**:\n- `dockerfile` (Path): Path to Dockerfile\n- `tag` (str)\n- `context` (Path)\n\n**返回值**:`None`"}]}
7
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `BackendFactory` 的作用。"}, {"role": "assistant", "content": "`BackendFactory` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/config.py`。\n**功能描述**:\nFactory for creating backend instances based on configuration. Provides pluggable implementations for queue, database, LLM, and cache.\n**函数签名**:\n```python\nclass BackendFactory:\n```"}]}
8
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`compose_logs` 有什么功能?"}, {"role": "assistant", "content": "`compose_logs` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/docker.py`。\n**功能描述**:\nView logs for a Docker Compose service. Args: service: Service name follow: Follow log output (default: False) tail: Number of lines to show from end (default: all) Raises: DockerComposeError: If compose logs fails\n**函数签名**:\n```python\ndef compose_logs(\nservice: str,\nfollow: bool = False,\ntail: int | None = None,\n) -> None:\n```\n**参数**:\n- `service` (str): Service name\n- `follow` (bool)\n- `tail` (int | None)\n\n**返回值**:`None`"}]}
9
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`ProjectDetails.validate_name` 有什么功能?"}, {"role": "assistant", "content": "`ProjectDetails.validate_name` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/cli/utils/config.py`。\n**功能描述**:\nValidate project name format.\n**函数签名**:\n```python\ndef validate_name(cls, v: str) -> str:\n```\n**参数**:\n- `cls` (Any)\n- `v` (str)\n\n**返回值**:`str`"}]}
10
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `BackendFactory.create_database_backend` 函数?"}, {"role": "assistant", "content": "`BackendFactory.create_database_backend` 位于 `lib/laddr/src/laddr/core/config.py`,使用方法如下:\n**参数说明**:\n\n**功能简述**:Create database backend based on config...."}]}
11
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`tool` 有什么功能?"}, {"role": "assistant", "content": "`tool` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/core/tooling.py`。\n**功能描述**:\nDecorator to mark a function as an agent tool. Usage: @tool(name=\"web_search\", description=\"Search the web\") def search(query: str) -> dict: return {\"results\": [...]} Or with Pydantic input model: class SearchInput(BaseModel): query: str limit: int = 10 @tool() def search(inputs: SearchInput) -> dict: return {\"results\": [...]} The decorator attaches metadata to the function as __laddr_tool__.\n**函数签名**:\n```python\ndef tool(\nname: str | None = None,\ndescription: str | None = None,\n*,\ntrace: bool = True,\n```\n**参数**:\n- `name` (str | None)\n- `description` (str | None)\n\n**返回值**:`None`"}]}
12
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ToolRegistry.__init__` 函数?"}, {"role": "assistant", "content": "`ToolRegistry.__init__` 位于 `lib/laddr/src/laddr/core/tooling.py`,使用方法如下:\n**参数说明**:"}]}
13
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `decorator` 函数?"}, {"role": "assistant", "content": "`decorator` 位于 `lib/laddr/src/laddr/core/system_tools.py`,使用方法如下:\n```python\ndecorator(func=...)\n```\n**参数说明**:\n- `func`: Callable"}]}
14
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `run` 的作用。"}, {"role": "assistant", "content": "`run` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/commands/run.py`。\n**功能描述**:\nRun environments, agents, or pipelines. Usage: laddr run dev [--build] [--no-detach] laddr run agent <agent_name> [--inputs '{...}'] laddr run pipeline <file.yml>\n**函数签名**:\n```python\ndef run(ctx: click.Context):\n```\n**参数**:\n- `ctx` (click.Context)\n\n**返回值**:`None`"}]}
15
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`AgentRunner.replay` 方法在哪个文件里?"}, {"role": "assistant", "content": "`AgentRunner.replay` 位于 `lib/laddr/src/laddr/core/runtime_entry.py`。"}]}
16
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `nearest_whitespace` 函数?"}, {"role": "assistant", "content": "`nearest_whitespace` 位于 `lib/laddr/src/laddr/core/system_tools.py`,使用方法如下:\n```python\nnearest_whitespace(target=..., low=..., high=...)\n```\n**参数说明**:\n- `target`: int\n- `low`: int\n- `high`: int"}]}
17
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`prompt` 函数在哪个文件里?"}, {"role": "assistant", "content": "`prompt` 位于 `lib/laddr/src/laddr/cli/commands/prompt.py`。"}]}
18
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `OllamaLLM.__init__` 函数?"}, {"role": "assistant", "content": "`OllamaLLM.__init__` 位于 `lib/laddr/src/laddr/core/llm.py`,使用方法如下:\n```python\nOllamaLLM.__init__(base_url=..., model=...)\n```\n**参数说明**:\n- `base_url`: str | None\n- `model`: str | None"}]}
19
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`GrokLLM` 类在哪个文件里?"}, {"role": "assistant", "content": "`GrokLLM` 位于 `lib/laddr/src/laddr/core/llm.py`。"}]}
20
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`MCPToolRegistry` 类在哪个文件里?"}, {"role": "assistant", "content": "`MCPToolRegistry` 位于 `lib/laddr/src/laddr/core/mcp_client.py`。"}]}
21
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `RedisCache.__init__` 函数?"}, {"role": "assistant", "content": "`RedisCache.__init__` 位于 `lib/laddr/src/laddr/core/cache.py`,使用方法如下:\n```python\nRedisCache.__init__(redis_url=...)\n```\n**参数说明**:\n- `redis_url`: str"}]}
22
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `InMemoryCache.delete` 函数?"}, {"role": "assistant", "content": "`InMemoryCache.delete` 位于 `lib/laddr/src/laddr/core/cache.py`,使用方法如下:\n```python\nInMemoryCache.delete(key=...)\n```\n**参数说明**:\n- `key`: str\n\n**功能简述**:Delete value from cache...."}]}
23
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`ProjectConfig` 有什么功能?"}, {"role": "assistant", "content": "`ProjectConfig` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/config.py`。\n**功能描述**:\nProject configuration from laddr.yml. Defines which agents exist and backend preferences.\n**函数签名**:\n```python\nclass ProjectConfig(BaseModel):\n```"}]}
24
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `EventThrottler` 的作用。"}, {"role": "assistant", "content": "`EventThrottler` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/api/main.py`。\n**功能描述**:\nThrottle WebSocket events to avoid overwhelming clients.\n**函数签名**:\n```python\nclass EventThrottler:\n```"}]}
25
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `AgentRunner._discover_local_agents` 函数?"}, {"role": "assistant", "content": "`AgentRunner._discover_local_agents` 位于 `lib/laddr/src/laddr/core/runtime_entry.py`,使用方法如下:\n```python\nAgentRunner._discover_local_agents(exclude=...)\n```\n**参数说明**:\n- `exclude`: list[str] | None\n\n**功能简述**:Discover local agents under the 'agents' package for inline execution...."}]}
26
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AgentRunner.__init__` 有什么功能?"}, {"role": "assistant", "content": "`AgentRunner.__init__` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/runtime_entry.py`。\n**功能描述**:\nInitialize runner. Args: agent: Agent instance (created if None) env_config: Environment configuration\n**函数签名**:\n```python\ndef __init__(\nself,\nagent: Agent | None = None,\nenv_config: LaddrConfig | None = None\n):\n```\n**参数**:\n- `self` (Any)\n- `agent` (Agent | None): Agent instance (created if None)\n- `env_config` (LaddrConfig | None)\n\n**返回值**:`None`"}]}
27
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`add_tool` 函数在哪个文件里?"}, {"role": "assistant", "content": "`add_tool` 位于 `lib/laddr/src/laddr/cli/commands/add.py`。"}]}
28
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ps` 函数?"}, {"role": "assistant", "content": "`ps` 位于 `lib/laddr/src/laddr/cli/commands/management.py`,使用方法如下:\n```python\nps(format=...)\n```\n**参数说明**:\n- `format`: str\n\n**功能简述**:Show status of all services and workers. Examples: laddr ps laddr ps --format json..."}]}
29
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `discover_tools` 函数?"}, {"role": "assistant", "content": "`discover_tools` 位于 `lib/laddr/src/laddr/core/tooling.py`,使用方法如下:\n```python\ndiscover_tools(agent_name=...)\n```\n**参数说明**:\n- `agent_name`: str - Name of the agent (e.g., \"researcher\")\n\n**功能简述**:Auto-discover tools for an agent from agents.<agent_name>.tools package. Scans for: 1. Functions decorated with @tool 2. Functions named 'run' (fallback) Args: agent_name: Name of the agent (e.g., \"re..."}]}
30
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `MCPToolRegistry.__init__` 函数?"}, {"role": "assistant", "content": "`MCPToolRegistry.__init__` 位于 `lib/laddr/src/laddr/core/mcp_client.py`,使用方法如下:\n**参数说明**:"}]}
31
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`Agent` 有什么功能?"}, {"role": "assistant", "content": "`Agent` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nBase Agent class with full runtime capabilities. Provides: - Planning and execution - Tool calling with validation and caching - Delegation with blocking wait for responses - Memory storage - Auto-registration on message bus - Trace logging to database Subclasses should override plan() method for custom planning logic, or use the default autonomous_run() for intelligent LLM-driven execution.\n**函数签名**:\n```python\nclass Agent:\n```"}]}
32
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `run` 函数?"}, {"role": "assistant", "content": "`run` 位于 `lib/laddr/src/laddr/cli/commands/run.py`,使用方法如下:\n```python\nrun(ctx=...)\n```\n**参数说明**:\n- `ctx`: click.Context\n\n**功能简述**:Run environments, agents, or pipelines. Usage: laddr run dev [--build] [--no-detach] laddr run agent <agent_name> [--inputs '{...}'] laddr run pipeline <file.yml>..."}]}
33
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `print_header` 函数?"}, {"role": "assistant", "content": "`print_header` 位于 `lib/laddr/src/laddr/cli/utils/logger.py`,使用方法如下:\n```python\nprint_header(text=..., style=...)\n```\n**参数说明**:\n- `text`: str - Header text\n- `style`: str\n\n**功能简述**:Print a minimalistic header. Args: text: Header text style: Text style (default: bold cyan)..."}]}
34
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ArtifactStorageTool.__init__` 函数?"}, {"role": "assistant", "content": "`ArtifactStorageTool.__init__` 位于 `lib/laddr/src/laddr/core/system_tools.py`,使用方法如下:\n```python\nArtifactStorageTool.__init__(storage_backend=..., default_bucket=...)\n```\n**参数说明**:\n- `storage_backend`: Any - Storage backend (MinIO/S3)\n- `default_bucket`: str | None\n\n**功能简述**:Initialize artifact storage tool. Args: storage_backend: Storage backend (MinIO/S3)..."}]}
35
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ollama` 函数?"}, {"role": "assistant", "content": "`ollama` 位于 `lib/laddr/src/laddr/llms.py`,使用方法如下:\n```python\nollama(model=..., temperature=..., base_url=...)\n```\n**参数说明**:\n- `model`: str | None\n- `temperature`: float | None\n- `base_url`: str | None\n\n**功能简述**:Create a local Ollama backend instance. Example: llm = ollama(model=\"gemma2:2b\", base_url=\"http://localhost:11434\")..."}]}
36
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`anthropic` 函数在哪个文件里?"}, {"role": "assistant", "content": "`anthropic` 位于 `lib/laddr/src/laddr/llms.py`。"}]}
37
+ {"conversations": [{"role": "user", "content": "Laddr 的 `compose_scale` 是做什么的?"}, {"role": "assistant", "content": "`compose_scale` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/docker.py`。\n**功能描述**:\nScale a Docker Compose service. Args: service: Service name replicas: Number of replicas Raises: DockerComposeError: If scaling fails\n**函数签名**:\n```python\ndef compose_scale(service: str, replicas: int) -> None:\n```\n**参数**:\n- `service` (str): Service name\n- `replicas` (int)\n\n**返回值**:`None`"}]}
38
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `ToolRegistry.register` 的作用。"}, {"role": "assistant", "content": "`ToolRegistry.register` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/tooling.py`。\n**功能描述**:\nRegister a tool with optional aliases. Args: tool_obj: Tool instance or callable to register name: Optional explicit name (overrides tool_obj.name) aliases: Optional list of alias names that resolve to this tool\n**函数签名**:\n```python\ndef register(self, tool_obj: Tool | Callable, name: str | None = None, aliases: list[str] | None = None) -> None:\n```\n**参数**:\n- `self` (Any)\n- `tool_obj` (Tool | Callable): Tool instance or callable to register\n- `name` (str | None)\n- `aliases` (list[str] | None)\n\n**返回值**:`None`"}]}
39
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `GroqLLM.__init__` 函数?"}, {"role": "assistant", "content": "`GroqLLM.__init__` 位于 `lib/laddr/src/laddr/core/llm.py`,使用方法如下:\n```python\nGroqLLM.__init__(api_key=..., model=...)\n```\n**参数说明**:\n- `api_key`: str | None\n- `model`: str | None"}]}
40
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `AnthropicLLM.__init__` 函数?"}, {"role": "assistant", "content": "`AnthropicLLM.__init__` 位于 `lib/laddr/src/laddr/core/llm.py`,使用方法如下:\n```python\nAnthropicLLM.__init__(api_key=..., model=...)\n```\n**参数说明**:\n- `api_key`: str | None\n- `model`: str | None"}]}
41
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AnthropicLLM` 有什么功能?"}, {"role": "assistant", "content": "`AnthropicLLM` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/llm.py`。\n**功能描述**:\nAnthropic LLM backend.\n**函数签名**:\n```python\nclass AnthropicLLM:\n```"}]}
42
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`print_header` 有什么功能?"}, {"role": "assistant", "content": "`print_header` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint a minimalistic header. Args: text: Header text style: Text style (default: bold cyan)\n**函数签名**:\n```python\ndef print_header(text: str, style: str = \"bold cyan\") -> None:\n```\n**参数**:\n- `text` (str): Header text\n- `style` (str)\n\n**返回值**:`None`"}]}
43
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `print_completion` 函数?"}, {"role": "assistant", "content": "`print_completion` 位于 `lib/laddr/src/laddr/cli/utils/logger.py`,使用方法如下:\n```python\nprint_completion(message=...)\n```\n**参数说明**:\n- `message`: str - Completion message\n\n**功能简述**:Print a completion message with checkmark. Args: message: Completion message..."}]}
44
+ {"conversations": [{"role": "user", "content": "Laddr 的 `S3Storage._get_client` 是做什么的?"}, {"role": "assistant", "content": "`S3Storage._get_client` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/storage.py`。\n**功能描述**:\nGet synchronous S3-compatible client.\n**函数签名**:\n```python\ndef _get_client(self):\n```\n**参数**:\n- `self` (Any)\n\n**返回值**:`None`"}]}
data/training_data/train.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/training_data/val.jsonl ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `print_step` 的作用。"}, {"role": "assistant", "content": "`print_step` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint a step in a process with minimalistic style. Args: step: Step name/action description: Optional description\n**函数签名**:\n```python\ndef print_step(step: str, description: str = \"\") -> None:\n```\n**参数**:\n- `step` (str): Step name/action\n- `description` (str)\n\n**返回值**:`None`"}]}
2
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`print_completion` 有什么功能?"}, {"role": "assistant", "content": "`print_completion` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint a completion message with checkmark. Args: message: Completion message\n**函数签名**:\n```python\ndef print_completion(message: str) -> None:\n```\n**参数**:\n- `message` (str): Completion message\n\n**返回值**:`None`"}]}
3
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`Agent._format_history_for_synthesis` 有什么功能?"}, {"role": "assistant", "content": "`Agent._format_history_for_synthesis` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nFormat execution history for final answer synthesis.\n**函数签名**:\n```python\ndef _format_history_for_synthesis(self, history: list[dict]) -> str:\n```\n**参数**:\n- `self` (Any)\n- `history` (list[dict])\n\n**返回值**:`str`"}]}
4
+ {"conversations": [{"role": "user", "content": "Laddr 的 `AgentMemory.list` 是做什么的?"}, {"role": "assistant", "content": "`AgentMemory.list` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nList all memory entries.\n**函数签名**:\n```python\ndef list(self) -> dict[str, Any]:\n```\n**参数**:\n- `self` (Any)\n\n**返回值**:`dict[str, Any]`"}]}
5
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `gemini` 函数?"}, {"role": "assistant", "content": "`gemini` 位于 `lib/laddr/src/laddr/llms.py`,使用方法如下:\n```python\ngemini(model=..., temperature=...)\n```\n**参数说明**:\n- `model`: str | None\n- `temperature`: float | None"}]}
6
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`TemplateRenderer.__init__` 方法在哪个文件里?"}, {"role": "assistant", "content": "`TemplateRenderer.__init__` 位于 `lib/laddr/src/laddr/cli/utils/templates.py`。"}]}
7
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`DatabaseService.get_trace` 有什么功能?"}, {"role": "assistant", "content": "`DatabaseService.get_trace` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nGet a single trace event by id with full payload.\n**函数签名**:\n```python\ndef get_trace(self, trace_id: str) -> dict | None:\n```\n**参数**:\n- `self` (Any)\n- `trace_id` (str)\n\n**返回值**:`dict | None`"}]}
8
+ {"conversations": [{"role": "user", "content": "Laddr 的 `Memory` 是做什么的?"}, {"role": "assistant", "content": "`Memory` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nAgent memory storage.\n**函数签名**:\n```python\nclass Memory(Base):\n```"}]}
9
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`ps` 函数在哪个文件里?"}, {"role": "assistant", "content": "`ps` 位于 `lib/laddr/src/laddr/cli/commands/management.py`。"}]}
10
+ {"conversations": [{"role": "user", "content": "Laddr 的 `ServiceNotReadyError` 是做什么的?"}, {"role": "assistant", "content": "`ServiceNotReadyError` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/cli/utils/errors.py`。\n**功能描述**:\nRaised when a service is not ready after startup.\n**函数签名**:\n```python\nclass ServiceNotReadyError(LaddrError):\n```"}]}
11
+ {"conversations": [{"role": "user", "content": "Laddr 的 `list_prompts` 是做什么的?"}, {"role": "assistant", "content": "`list_prompts` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/commands/prompt.py`。\n**功能描述**:\nList recent prompt executions.\n**函数签名**:\n```python\ndef list_prompts(limit: int):\n```\n**参数**:\n- `limit` (int)\n\n**返回值**:`None`"}]}
12
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseBackend.save_result` 函数?"}, {"role": "assistant", "content": "`DatabaseBackend.save_result` 位于 `lib/laddr/src/laddr/core/config.py`,使用方法如下:\n```python\nDatabaseBackend.save_result(job_id=..., outputs=...)\n```\n**参数说明**:\n- `job_id`: str\n- `outputs`: dict"}]}
13
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `OllamaLLM` 的作用。"}, {"role": "assistant", "content": "`OllamaLLM` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/llm.py`。\n**功能描述**:\nLocal Ollama LLM backend (talks to a local Ollama HTTP server). Default base URL: http://localhost:11434 Expected model names: e.g. \"gemma2:2b\" (use LLM_MODEL or per-agent LLM_MODEL_<AGENT>)\n**函数签名**:\n```python\nclass OllamaLLM:\n```"}]}
14
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `MemoryBus.__init__` 函数?"}, {"role": "assistant", "content": "`MemoryBus.__init__` 位于 `lib/laddr/src/laddr/core/message_bus.py`,使用方法如下:\n**参数说明**:"}]}
15
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `add_tool` 函数?"}, {"role": "assistant", "content": "`add_tool` 位于 `lib/laddr/src/laddr/cli/commands/add.py`,使用方法如下:\n```python\nadd_tool(tool_name=..., agent=..., description=...)\n```\n**参数说明**:\n- `tool_name`: str\n- `agent`: str | None\n- `description`: str | None\n\n**功能简述**:Add a new tool to an agent. Examples: laddr add tool calculator laddr add tool scraper --agent researcher..."}]}
16
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `BackendFactory.create_cache_backend` 函数?"}, {"role": "assistant", "content": "`BackendFactory.create_cache_backend` 位于 `lib/laddr/src/laddr/core/config.py`,使用方法如下:\n**参数说明**:\n\n**功能简述**:Create cache backend based on config...."}]}
17
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AgentRegistry` 有什么功能?"}, {"role": "assistant", "content": "`AgentRegistry` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nAgent registration and metadata.\n**函数签名**:\n```python\nclass AgentRegistry(Base):\n```"}]}
18
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ProjectDetails.validate_name` 函数?"}, {"role": "assistant", "content": "`ProjectDetails.validate_name` 位于 `lib/laddr/src/laddr/cli/utils/config.py`,使用方法如下:\n```python\nProjectDetails.validate_name(cls=..., v=...)\n```\n**参数说明**:\n- `cls`: Any\n- `v`: str\n\n**功能简述**:Validate project name format...."}]}
19
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`TemplateRenderer` 类在哪个文件里?"}, {"role": "assistant", "content": "`TemplateRenderer` 位于 `lib/laddr/src/laddr/cli/utils/templates.py`。"}]}
20
+ {"conversations": [{"role": "user", "content": "Laddr 的 `MemoryBus` 是做什么的?"}, {"role": "assistant", "content": "`MemoryBus` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/message_bus.py`。\n**功能描述**:\nIn-memory message bus for testing and quick local dev. Not suitable for production or distributed systems.\n**函数签名**:\n```python\nclass MemoryBus:\n```"}]}
21
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `Agent.__init__` 的作用。"}, {"role": "assistant", "content": "`Agent.__init__` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nInitialize agent. Args: config: Agent-specific configuration env_config: Environment configuration (loaded if None) tools: Tool registry (auto-discovered if None)\n**函数签名**:\n```python\ndef __init__(\nself,\nconfig: AgentConfig,\nenv_config: LaddrConfig | None = None,\ntools: ToolRegistry | list[Any] | None = None,\n```\n**参数**:\n- `self` (Any)\n- `config` (AgentConfig): Agent-specific configuration\n- `env_config` (LaddrConfig | None)\n- `tools` (ToolRegistry | list[Any] | None)\n\n**返回值**:`None`"}]}
22
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `Tool.validate_inputs` 函数?"}, {"role": "assistant", "content": "`Tool.validate_inputs` 位于 `lib/laddr/src/laddr/core/tooling.py`,使用方法如下:\n```python\nTool.validate_inputs(inputs=...)\n```\n**参数说明**:\n- `inputs`: dict[str, Any]\n\n**功能简述**:Validate inputs against input_model if available. Returns validated inputs or raises ValidationError...."}]}
23
+ {"conversations": [{"role": "user", "content": "Laddr 的 `bind_tools` 是做什么的?"}, {"role": "assistant", "content": "`bind_tools` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/core/tooling.py`。\n**功能描述**:\nBind tools to an agent instance for explicit, readable tool registration. Supports: - String names: auto-import from agents.<agent>.tools.<name> - Callables: register directly - Decorated functions: extract Tool metadata Usage: from agents.researcher.tools import web_search bind_tools(self, [web_search.run, \"summarize\"]) Args: agent_instance: Agent instance with .tools registry tools: List of tool names (str) or callables\n**函数签名**:\n```python\ndef bind_tools(agent_instance: Any, tools: list[str | Callable]) -> None:\n```\n**参数**:\n- `agent_instance` (Any): Agent instance with .tools registry\n- `tools` (list[str | Callable])\n\n**返回值**:`None`"}]}
24
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`gemini` 函数在哪个文件里?"}, {"role": "assistant", "content": "`gemini` 位于 `lib/laddr/src/laddr/llms.py`。"}]}
25
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `init` 函数?"}, {"role": "assistant", "content": "`init` 位于 `lib/laddr/src/laddr/cli/commands/init.py`,使用方法如下:\n```python\ninit(project_name=..., path=...)\n```\n**参数说明**:\n- `project_name`: str | None\n- `path`: str\n\n**功能简述**:Initialize a new Laddr project. Creates project structure with: - Configuration files (laddr.yml, .env) - Docker setup (docker-compose.yml, Dockerfile) - Default researcher agent - Example tools and p..."}]}
26
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AgentChatRequest` 有什么功能?"}, {"role": "assistant", "content": "`AgentChatRequest` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/api/main.py`。\n**功能描述**:\nRequest to chat with an agent.\n**函数签名**:\n```python\nclass AgentChatRequest(BaseModel):\n```"}]}
27
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AgentMemory.get` 有什么功能?"}, {"role": "assistant", "content": "`AgentMemory.get` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nRetrieve a memory entry.\n**函数签名**:\n```python\ndef get(self, key: str) -> Any:\n```\n**参数**:\n- `self` (Any)\n- `key` (str)\n\n**返回值**:`Any`"}]}
28
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseService.list_prompts` 函数?"}, {"role": "assistant", "content": "`DatabaseService.list_prompts` 位于 `lib/laddr/src/laddr/core/database.py`,使用方法如下:\n```python\nDatabaseService.list_prompts(limit=...)\n```\n**参数说明**:\n- `limit`: int\n\n**功能简述**:List recent prompt executions...."}]}
29
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`wrap_with_runtime_injection` 函数在哪个文件里?"}, {"role": "assistant", "content": "`wrap_with_runtime_injection` 位于 `lib/laddr/src/laddr/core/system_tools.py`。"}]}
30
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `_print_service_info` 的作用。"}, {"role": "assistant", "content": "`_print_service_info` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/commands/run.py`。\n**功能描述**:\nPrint service URLs in minimalistic style.\n**函数签名**:\n```python\ndef _print_service_info() -> None:\n```\n**返回值**:`None`"}]}
31
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`ProjectDetails.validate_name` 方法在哪个文件里?"}, {"role": "assistant", "content": "`ProjectDetails.validate_name` 位于 `lib/laddr/src/laddr/cli/utils/config.py`。"}]}
32
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`PipelineStage` 有什么功能?"}, {"role": "assistant", "content": "`PipelineStage` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/config.py`。\n**功能描述**:\nStage definition in a pipeline (simplified).\n**函数签名**:\n```python\nclass PipelineStage(BaseModel):\n```"}]}
33
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `_build_trace_tree` 的作用。"}, {"role": "assistant", "content": "`_build_trace_tree` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/api/main.py`。\n**功能描述**:\nBuild hierarchical trace tree from flat traces. Groups by agent runs and nests tool calls/LLM calls within them.\n**函数签名**:\n```python\ndef _build_trace_tree(traces: list[dict]) -> list[dict]:\n```\n**参数**:\n- `traces` (list[dict])\n\n**返回值**:`list[dict]`"}]}
34
+ {"conversations": [{"role": "user", "content": "在 Laddr 项目中,`Agent._parse_autonomous_action` 有什么功能?"}, {"role": "assistant", "content": "`Agent._parse_autonomous_action` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nParse LLM response to extract action, preferring JSON format with text fallback.\n**函数签名**:\n```python\ndef _parse_autonomous_action(self, response: str) -> dict:\n```\n**参数**:\n- `self` (Any)\n- `response` (str)\n\n**返回值**:`dict`"}]}
35
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `print_warning` 的作用。"}, {"role": "assistant", "content": "`print_warning` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint a warning message. Args: message: Warning message\n**函数签名**:\n```python\ndef print_warning(message: str) -> None:\n```\n**参数**:\n- `message` (str): Warning message\n\n**返回值**:`None`"}]}
36
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseService.get_job_traces` 函数?"}, {"role": "assistant", "content": "`DatabaseService.get_job_traces` 位于 `lib/laddr/src/laddr/core/database.py`,使用方法如下:\n```python\nDatabaseService.get_job_traces(job_id=...)\n```\n**参数说明**:\n- `job_id`: str\n\n**功能简述**:Get all traces for a job...."}]}
37
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseService.register_agent` 函数?"}, {"role": "assistant", "content": "`DatabaseService.register_agent` 位于 `lib/laddr/src/laddr/core/database.py`,使用方法如下:\n```python\nDatabaseService.register_agent(agent_name=..., metadata=...)\n```\n**参数说明**:\n- `agent_name`: str\n- `metadata`: dict\n\n**功能简述**:Register or update an agent in the registry...."}]}
38
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseService.get_result` 函数?"}, {"role": "assistant", "content": "`DatabaseService.get_result` 位于 `lib/laddr/src/laddr/core/database.py`,使用方法如下:\n```python\nDatabaseService.get_result(job_id=...)\n```\n**参数说明**:\n- `job_id`: str\n\n**功能简述**:Get job result...."}]}
39
+ {"conversations": [{"role": "user", "content": "Laddr 的 `CacheBackend` 是做什么的?"}, {"role": "assistant", "content": "`CacheBackend` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/config.py`。\n**功能描述**:\nProtocol for cache backends.\n**函数签名**:\n```python\nclass CacheBackend(Protocol):\n```"}]}
40
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `Agent._trace` 函数?"}, {"role": "assistant", "content": "`Agent._trace` 位于 `lib/laddr/src/laddr/core/agent_runtime.py`,使用方法如下:\n```python\nAgent._trace(job_id=..., agent_name=..., event_type=..., payload=...)\n```\n**参数说明**:\n- `job_id`: str\n- `agent_name`: str\n- `event_type`: str\n- `payload`: dict\n\n**功能简述**:Append a trace if enabled and not masked...."}]}
41
+ {"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `Agent._parse_autonomous_action_text` 函数?"}, {"role": "assistant", "content": "`Agent._parse_autonomous_action_text` 位于 `lib/laddr/src/laddr/core/agent_runtime.py`,使用方法如下:\n```python\nAgent._parse_autonomous_action_text(response=...)\n```\n**参数说明**:\n- `response`: str\n\n**功能简述**:Parse legacy text format with ACTION:/AGENT:/TOOL_NAME:/... lines...."}]}
42
+ {"conversations": [{"role": "user", "content": "请解释 Laddr 中 `DatabaseService.create_prompt` 的作用。"}, {"role": "assistant", "content": "`DatabaseService.create_prompt` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nCreate a new prompt execution record.\n**函数签名**:\n```python\ndef create_prompt(self, prompt_id: str | None, prompt_name: str, inputs: dict) -> str:\n```\n**参数**:\n- `self` (Any)\n- `prompt_id` (str | None)\n- `prompt_name` (str)\n- `inputs` (dict)\n\n**返回值**:`str`"}]}
43
+ {"conversations": [{"role": "user", "content": "在 Laddr 中,`DatabaseBackend.list_agents` 方法在哪个文件里?"}, {"role": "assistant", "content": "`DatabaseBackend.list_agents` 位于 `lib/laddr/src/laddr/core/config.py`。"}]}
44
+ {"conversations": [{"role": "user", "content": "Laddr 的 `print_table` 是做什么的?"}, {"role": "assistant", "content": "`print_table` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint data as a rich table. Args: data: List of dictionaries (each dict is a row) title: Optional table title\n**函数签名**:\n```python\ndef print_table(data: list[dict], title: str | None = None) -> None:\n```\n**参数**:\n- `data` (list[dict]): List of dictionaries (each dict is a row)\n- `title` (str | None)\n\n**返回值**:`None`"}]}
output/.DS_Store ADDED
Binary file (6.15 kB). View file
 
output/finetuned_model/all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 15.0,
3
+ "eval_loss": 0.36164844036102295,
4
+ "eval_runtime": 19.5939,
5
+ "eval_samples_per_second": 2.246,
6
+ "eval_steps_per_second": 0.561,
7
+ "total_flos": 4194690293760.0,
8
+ "train_loss": 0.13649824394731586,
9
+ "train_runtime": 4647.838,
10
+ "train_samples_per_second": 1.136,
11
+ "train_steps_per_second": 0.036
12
+ }
output/finetuned_model/checkpoint-100/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen3-8B
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen3-8B
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
output/finetuned_model/checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen3-8B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 128,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 64,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "q_proj",
29
+ "down_proj",
30
+ "o_proj",
31
+ "gate_proj",
32
+ "v_proj",
33
+ "up_proj",
34
+ "k_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
output/finetuned_model/checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4bdb15b8b2fddfc07564cb9cc2628910883a425bca84faaa179995f91121f28
3
+ size 349244256
output/finetuned_model/checkpoint-100/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
output/finetuned_model/checkpoint-100/chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
output/finetuned_model/checkpoint-100/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5db0035a11255731a939f91310dd0b203605027b8612e596757b9c0c9302768b
3
+ size 1047531685
output/finetuned_model/checkpoint-100/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40f28549882323943a7e3fb546378acb36aef4a8afa5be819e9a463439522eb2
3
+ size 1047531685
output/finetuned_model/checkpoint-100/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8435c4684810b01226e6bd9356601fd67e07d616aea9fc706100f90778f351
3
+ size 504721
output/finetuned_model/checkpoint-100/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8ea3e44dab4fe4bd0dc8c9d8b7e1b69fa0664df796447980d7d69185bb8182e
3
+ size 504721
output/finetuned_model/checkpoint-100/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step100
output/finetuned_model/checkpoint-100/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
output/finetuned_model/checkpoint-100/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11feaaeae1609ce17295b2ede1dd07125882006761ebeb4d125c8ba0a00acf6b
3
+ size 14917
output/finetuned_model/checkpoint-100/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a16d6396806fbc784f6e7bb03f2a7b4a6f569c964ccf5fe1bfadf6389e05af8f
3
+ size 14917
output/finetuned_model/checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bedc55c2b89b8c70fee4c419e7d755566357dcab6a912093210f03702324e13
3
+ size 1465
output/finetuned_model/checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
output/finetuned_model/checkpoint-100/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
output/finetuned_model/checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
output/finetuned_model/checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 100,
3
+ "best_metric": 0.36164844036102295,
4
+ "best_model_checkpoint": "output/finetuned_model/checkpoint-100",
5
+ "epoch": 9.090909090909092,
6
+ "eval_steps": 100,
7
+ "global_step": 100,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.09090909090909091,
14
+ "grad_norm": 4.3420233726501465,
15
+ "learning_rate": 0.0,
16
+ "loss": 2.8404,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.9090909090909091,
21
+ "grad_norm": 0.5920354127883911,
22
+ "learning_rate": 0.0005,
23
+ "loss": 1.3885,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 1.8181818181818183,
28
+ "grad_norm": 0.37487199902534485,
29
+ "learning_rate": 0.0004949476630105669,
30
+ "loss": 0.3859,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 2.7272727272727275,
35
+ "grad_norm": 0.4673846364021301,
36
+ "learning_rate": 0.0004799948609147061,
37
+ "loss": 0.1584,
38
+ "step": 30
39
+ },
40
+ {
41
+ "epoch": 3.6363636363636362,
42
+ "grad_norm": 0.2643900513648987,
43
+ "learning_rate": 0.0004557459664734141,
44
+ "loss": 0.0623,
45
+ "step": 40
46
+ },
47
+ {
48
+ "epoch": 4.545454545454545,
49
+ "grad_norm": 0.21961501240730286,
50
+ "learning_rate": 0.00042318108837739987,
51
+ "loss": 0.0477,
52
+ "step": 50
53
+ },
54
+ {
55
+ "epoch": 5.454545454545454,
56
+ "grad_norm": 0.14172837138175964,
57
+ "learning_rate": 0.00038361645653195025,
58
+ "loss": 0.0259,
59
+ "step": 60
60
+ },
61
+ {
62
+ "epoch": 6.363636363636363,
63
+ "grad_norm": 0.05771714448928833,
64
+ "learning_rate": 0.0003386512217606339,
65
+ "loss": 0.0128,
66
+ "step": 70
67
+ },
68
+ {
69
+ "epoch": 7.2727272727272725,
70
+ "grad_norm": 0.04812893271446228,
71
+ "learning_rate": 0.0002901028202144401,
72
+ "loss": 0.0076,
73
+ "step": 80
74
+ },
75
+ {
76
+ "epoch": 8.181818181818182,
77
+ "grad_norm": 0.03544061630964279,
78
+ "learning_rate": 0.0002399335149726463,
79
+ "loss": 0.0046,
80
+ "step": 90
81
+ },
82
+ {
83
+ "epoch": 9.090909090909092,
84
+ "grad_norm": 0.010216760449111462,
85
+ "learning_rate": 0.00019017108392811063,
86
+ "loss": 0.0036,
87
+ "step": 100
88
+ },
89
+ {
90
+ "epoch": 9.090909090909092,
91
+ "eval_loss": 0.36164844036102295,
92
+ "eval_runtime": 19.4544,
93
+ "eval_samples_per_second": 2.262,
94
+ "eval_steps_per_second": 0.565,
95
+ "step": 100
96
+ }
97
+ ],
98
+ "logging_steps": 10,
99
+ "max_steps": 165,
100
+ "num_input_tokens_seen": 0,
101
+ "num_train_epochs": 15,
102
+ "save_steps": 100,
103
+ "stateful_callbacks": {
104
+ "TrainerControl": {
105
+ "args": {
106
+ "should_epoch_stop": false,
107
+ "should_evaluate": false,
108
+ "should_log": false,
109
+ "should_save": true,
110
+ "should_training_stop": false
111
+ },
112
+ "attributes": {}
113
+ }
114
+ },
115
+ "total_flos": 2537229926400.0,
116
+ "train_batch_size": 2,
117
+ "trial_name": null,
118
+ "trial_params": null
119
+ }
output/finetuned_model/checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26f3e70da891d4b4c03100e0214975b3f0494b364a6dd21c49136d030c4a1005
3
+ size 7825
output/finetuned_model/checkpoint-100/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
output/finetuned_model/checkpoint-100/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if ZERO_STAGE not in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info("Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info("Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
output/finetuned_model/checkpoint-165/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen3-8B
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen3-8B
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
output/finetuned_model/checkpoint-165/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen3-8B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 128,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 64,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "q_proj",
29
+ "down_proj",
30
+ "o_proj",
31
+ "gate_proj",
32
+ "v_proj",
33
+ "up_proj",
34
+ "k_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
output/finetuned_model/checkpoint-165/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3967b5fe0e7ae6170e9f8d2af8dad8d9c1488c73d5724ef1db8c1ddbba1de2f0
3
+ size 349244256
output/finetuned_model/checkpoint-165/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
output/finetuned_model/checkpoint-165/chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
output/finetuned_model/checkpoint-165/global_step165/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c047a6448f39a1709f75ca908371d5c0d996437aeca11191907695094a1a5f59
3
+ size 1047531685
output/finetuned_model/checkpoint-165/global_step165/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7c1b75d37d0366dd4bf6cb199a4881cb0c1437d6553b544235fef6d10dc147a
3
+ size 1047531685
output/finetuned_model/checkpoint-165/global_step165/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e51cd9debf39609f3bab78aa077325c7d9a08d8d7d06a876ec9e5a04724a4818
3
+ size 504721
output/finetuned_model/checkpoint-165/global_step165/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56eb5f5f4334596a4ebd8265059cd8e6c2b65727397430dd17166c34959b427c
3
+ size 504721
output/finetuned_model/checkpoint-165/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step165
output/finetuned_model/checkpoint-165/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
output/finetuned_model/checkpoint-165/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4105c99ac8eb33523066f111503ce7637a964f5a503fa603a8cdb2ea0be71a
3
+ size 14917
output/finetuned_model/checkpoint-165/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84264b6e5bb199107adcbe258f1bd9ffc4e2a1e7e0f7097c3e8f46113aeeb092
3
+ size 14917
output/finetuned_model/checkpoint-165/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f4c7648800972a9eb6b3f5600e31f42ff22d228c98399ecf7b7b9711d81f46
3
+ size 1465
output/finetuned_model/checkpoint-165/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }