Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- .gitattributes +5 -0
- Makefile +44 -0
- README.md +0 -4
- config/deepspeed_zero3.json +38 -0
- config/default_config.yaml +87 -0
- data/.DS_Store +0 -0
- data/repository_analysis.json +0 -0
- data/training_data/metadata.json +15 -0
- data/training_data/test.jsonl +44 -0
- data/training_data/train.jsonl +0 -0
- data/training_data/val.jsonl +44 -0
- output/.DS_Store +0 -0
- output/finetuned_model/all_results.json +12 -0
- output/finetuned_model/checkpoint-100/README.md +207 -0
- output/finetuned_model/checkpoint-100/adapter_config.json +42 -0
- output/finetuned_model/checkpoint-100/adapter_model.safetensors +3 -0
- output/finetuned_model/checkpoint-100/added_tokens.json +28 -0
- output/finetuned_model/checkpoint-100/chat_template.jinja +89 -0
- output/finetuned_model/checkpoint-100/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- output/finetuned_model/checkpoint-100/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- output/finetuned_model/checkpoint-100/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- output/finetuned_model/checkpoint-100/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- output/finetuned_model/checkpoint-100/latest +1 -0
- output/finetuned_model/checkpoint-100/merges.txt +0 -0
- output/finetuned_model/checkpoint-100/rng_state_0.pth +3 -0
- output/finetuned_model/checkpoint-100/rng_state_1.pth +3 -0
- output/finetuned_model/checkpoint-100/scheduler.pt +3 -0
- output/finetuned_model/checkpoint-100/special_tokens_map.json +31 -0
- output/finetuned_model/checkpoint-100/tokenizer.json +3 -0
- output/finetuned_model/checkpoint-100/tokenizer_config.json +240 -0
- output/finetuned_model/checkpoint-100/trainer_state.json +119 -0
- output/finetuned_model/checkpoint-100/training_args.bin +3 -0
- output/finetuned_model/checkpoint-100/vocab.json +0 -0
- output/finetuned_model/checkpoint-100/zero_to_fp32.py +760 -0
- output/finetuned_model/checkpoint-165/README.md +207 -0
- output/finetuned_model/checkpoint-165/adapter_config.json +42 -0
- output/finetuned_model/checkpoint-165/adapter_model.safetensors +3 -0
- output/finetuned_model/checkpoint-165/added_tokens.json +28 -0
- output/finetuned_model/checkpoint-165/chat_template.jinja +89 -0
- output/finetuned_model/checkpoint-165/global_step165/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- output/finetuned_model/checkpoint-165/global_step165/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- output/finetuned_model/checkpoint-165/global_step165/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- output/finetuned_model/checkpoint-165/global_step165/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- output/finetuned_model/checkpoint-165/latest +1 -0
- output/finetuned_model/checkpoint-165/merges.txt +0 -0
- output/finetuned_model/checkpoint-165/rng_state_0.pth +3 -0
- output/finetuned_model/checkpoint-165/rng_state_1.pth +3 -0
- output/finetuned_model/checkpoint-165/scheduler.pt +3 -0
- output/finetuned_model/checkpoint-165/special_tokens_map.json +31 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
.gitattributes
CHANGED
|
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
output/finetuned_model/checkpoint-100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
output/finetuned_model/checkpoint-165/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
output/finetuned_model/checkpoint-33/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
output/finetuned_model/final_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
output/finetuned_model/merged_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
Makefile
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Makefile
|
| 2 |
+
.PHONY: all config analyze generate train merge evaluate clean
|
| 3 |
+
|
| 4 |
+
all: config analyze generate train merge evaluate
|
| 5 |
+
|
| 6 |
+
config:
|
| 7 |
+
@echo "Step 0: Updating configuration..."
|
| 8 |
+
python utils/config_manager.py
|
| 9 |
+
|
| 10 |
+
analyze:
|
| 11 |
+
@echo "Step 1: Analyzing repository..."
|
| 12 |
+
python scripts/01_analyze_repo.py
|
| 13 |
+
|
| 14 |
+
generate:
|
| 15 |
+
@echo "Step 2: Generating training data..."
|
| 16 |
+
python scripts/02_generate_data.py
|
| 17 |
+
|
| 18 |
+
train:
|
| 19 |
+
@echo "Step 3: Fine-tuning model..."
|
| 20 |
+
deepspeed --num_gpus=2 scripts/03_train_model.py
|
| 21 |
+
|
| 22 |
+
merge:
|
| 23 |
+
@echo "Step 4: Merging LoRA weights..."
|
| 24 |
+
python scripts/04_merge_weights.py
|
| 25 |
+
|
| 26 |
+
evaluate:
|
| 27 |
+
@echo "Step 5: Evaluating model..."
|
| 28 |
+
python scripts/05_evaluate.py
|
| 29 |
+
|
| 30 |
+
clean:
|
| 31 |
+
@echo "Cleaning output files..."
|
| 32 |
+
rm -rf output/finetuned_model/checkpoints/*
|
| 33 |
+
rm -rf data/training_data/*
|
| 34 |
+
|
| 35 |
+
help:
|
| 36 |
+
@echo "Available targets:"
|
| 37 |
+
@echo " make all - Run complete pipeline"
|
| 38 |
+
@echo " make config - Update repository config"
|
| 39 |
+
@echo " make analyze - Analyze code repository"
|
| 40 |
+
@echo " make generate - Generate training data"
|
| 41 |
+
@echo " make train - Fine-tune model"
|
| 42 |
+
@echo " make merge - Merge LoRA weights"
|
| 43 |
+
@echo " make evaluate - Evaluate model"
|
| 44 |
+
@echo " make clean - Clean output files"
|
README.md
CHANGED
|
@@ -1143,7 +1143,3 @@ python scripts/05_evaluate.py --quick-eval
|
|
| 1143 |
- 企业内部代码助手
|
| 1144 |
- 开源项目文档生成
|
| 1145 |
- 代码审查辅助
|
| 1146 |
-
|
| 1147 |
-
---
|
| 1148 |
-
license: mit
|
| 1149 |
-
---
|
|
|
|
| 1143 |
- 企业内部代码助手
|
| 1144 |
- 开源项目文档生成
|
| 1145 |
- 代码审查辅助
|
|
|
|
|
|
|
|
|
|
|
|
config/deepspeed_zero3.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bf16": {
|
| 3 |
+
"enabled": true
|
| 4 |
+
},
|
| 5 |
+
"zero_optimization": {
|
| 6 |
+
"stage": 3,
|
| 7 |
+
"offload_optimizer": {
|
| 8 |
+
"device": "cpu",
|
| 9 |
+
"pin_memory": true
|
| 10 |
+
},
|
| 11 |
+
"offload_param": {
|
| 12 |
+
"device": "cpu",
|
| 13 |
+
"pin_memory": true
|
| 14 |
+
},
|
| 15 |
+
"overlap_comm": true,
|
| 16 |
+
"contiguous_gradients": true,
|
| 17 |
+
"sub_group_size": 1e9,
|
| 18 |
+
"reduce_bucket_size": "auto",
|
| 19 |
+
"stage3_prefetch_bucket_size": "auto",
|
| 20 |
+
"stage3_param_persistence_threshold": "auto",
|
| 21 |
+
"stage3_max_live_parameters": 1e9,
|
| 22 |
+
"stage3_max_reuse_distance": 1e9,
|
| 23 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
| 24 |
+
},
|
| 25 |
+
"gradient_accumulation_steps": "auto",
|
| 26 |
+
"gradient_clipping": "auto",
|
| 27 |
+
"steps_per_print": 10,
|
| 28 |
+
"train_batch_size": "auto",
|
| 29 |
+
"train_micro_batch_size_per_gpu": "auto",
|
| 30 |
+
"wall_clock_breakdown": false,
|
| 31 |
+
"aio": {
|
| 32 |
+
"block_size": 1048576,
|
| 33 |
+
"queue_depth": 8,
|
| 34 |
+
"thread_count": 1,
|
| 35 |
+
"single_submit": false,
|
| 36 |
+
"overlap_events": true
|
| 37 |
+
}
|
| 38 |
+
}
|
config/default_config.yaml
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data_generation:
|
| 2 |
+
design_proposals:
|
| 3 |
+
count: 100
|
| 4 |
+
requirement_types:
|
| 5 |
+
- 新功能开发
|
| 6 |
+
- 性能优化
|
| 7 |
+
- 架构重构
|
| 8 |
+
- API设计
|
| 9 |
+
- 错误处理
|
| 10 |
+
qa_pairs:
|
| 11 |
+
count: 500
|
| 12 |
+
diversity_threshold: 0.7
|
| 13 |
+
max_code_lines: 40
|
| 14 |
+
min_code_lines: 5
|
| 15 |
+
dataset:
|
| 16 |
+
format: jsonl
|
| 17 |
+
output_dir: ./data/training_data
|
| 18 |
+
test_split: 0.1
|
| 19 |
+
train_split: 0.8
|
| 20 |
+
val_split: 0.1
|
| 21 |
+
evaluation:
|
| 22 |
+
metrics:
|
| 23 |
+
- rouge
|
| 24 |
+
- bleu
|
| 25 |
+
- exact_match
|
| 26 |
+
sample_size: 50
|
| 27 |
+
gpu:
|
| 28 |
+
devices:
|
| 29 |
+
- 0
|
| 30 |
+
- 1
|
| 31 |
+
memory_per_gpu: 48
|
| 32 |
+
llm_api:
|
| 33 |
+
batch_size: 4
|
| 34 |
+
max_workers: 2
|
| 35 |
+
model: Qwen/Qwen3-8B
|
| 36 |
+
provider: local
|
| 37 |
+
model:
|
| 38 |
+
base_model: Qwen/Qwen3-8B
|
| 39 |
+
enable_thinking: true
|
| 40 |
+
max_length: 2048
|
| 41 |
+
temperature: 0.7
|
| 42 |
+
thinking_budget: 4096
|
| 43 |
+
top_p: 0.9
|
| 44 |
+
project:
|
| 45 |
+
name: code_repo_training_data_generator
|
| 46 |
+
version: 1.0.0
|
| 47 |
+
repository:
|
| 48 |
+
exclude_dirs:
|
| 49 |
+
- .git
|
| 50 |
+
- __pycache__
|
| 51 |
+
- node_modules
|
| 52 |
+
- .venv
|
| 53 |
+
- venv
|
| 54 |
+
- build
|
| 55 |
+
- dist
|
| 56 |
+
languages:
|
| 57 |
+
- python
|
| 58 |
+
- markdown
|
| 59 |
+
local_path: ./repos/Laddr
|
| 60 |
+
url: https://github.com/AgnetLabs/Laddr
|
| 61 |
+
training:
|
| 62 |
+
batch_size: 2
|
| 63 |
+
bf16: true
|
| 64 |
+
deepspeed_config: ./deepspeed_config_optimized.json
|
| 65 |
+
eval_steps: 100
|
| 66 |
+
gradient_accumulation_steps: 8
|
| 67 |
+
learning_rate: 1e-3
|
| 68 |
+
logging_steps: 10
|
| 69 |
+
lora:
|
| 70 |
+
alpha: 128
|
| 71 |
+
bias: none
|
| 72 |
+
dropout: 0.05
|
| 73 |
+
r: 64
|
| 74 |
+
target_modules:
|
| 75 |
+
- q_proj
|
| 76 |
+
- k_proj
|
| 77 |
+
- v_proj
|
| 78 |
+
- o_proj
|
| 79 |
+
- gate_proj
|
| 80 |
+
- up_proj
|
| 81 |
+
- down_proj
|
| 82 |
+
max_grad_norm: 1.0
|
| 83 |
+
num_epochs: 3
|
| 84 |
+
output_dir: ./output/finetuned_model
|
| 85 |
+
save_steps: 100
|
| 86 |
+
warmup_ratio: 0.05
|
| 87 |
+
weight_decay: 0.01
|
data/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
data/repository_analysis.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/training_data/metadata.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_samples": 440,
|
| 3 |
+
"train_samples": 352,
|
| 4 |
+
"val_samples": 44,
|
| 5 |
+
"test_samples": 44,
|
| 6 |
+
"project_name": "Laddr",
|
| 7 |
+
"task_distribution": {
|
| 8 |
+
"code_explanation": 212,
|
| 9 |
+
"code_location": 75,
|
| 10 |
+
"api_usage": 150,
|
| 11 |
+
"project_structure": 1,
|
| 12 |
+
"project_overview": 1,
|
| 13 |
+
"core_components": 1
|
| 14 |
+
}
|
| 15 |
+
}
|
data/training_data/test.jsonl
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`_parse_ts` 函数在哪个文件里?"}, {"role": "assistant", "content": "`_parse_ts` 位于 `lib/laddr/src/laddr/api/main.py`。"}]}
|
| 2 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`ps` 有什么功能?"}, {"role": "assistant", "content": "`ps` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/commands/management.py`。\n**功能描述**:\nShow status of all services and workers. Examples: laddr ps laddr ps --format json\n**函数签名**:\n```python\ndef ps(format: str):\n```\n**参数**:\n- `format` (str)\n\n**返回值**:`None`"}]}
|
| 3 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`run_prompt` 函数在哪个文件里?"}, {"role": "assistant", "content": "`run_prompt` 位于 `lib/laddr/src/laddr/cli/commands/prompt.py`。"}]}
|
| 4 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `MCPToolSource` 是做什么的?"}, {"role": "assistant", "content": "`MCPToolSource` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/mcp_client.py`。\n**功能描述**:\nPlaceholder - MCP feature disabled for this release.\n**函数签名**:\n```python\nclass MCPToolSource:\n```"}]}
|
| 5 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `DatabaseService.memory_put` 是做什么的?"}, {"role": "assistant", "content": "`DatabaseService.memory_put` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nStore a memory entry.\n**函数签名**:\n```python\ndef memory_put(self, agent_name: str, key: str, value: Any, job_id: str | None = None) -> None:\n```\n**参数**:\n- `self` (Any)\n- `agent_name` (str)\n- `key` (str)\n- `value` (Any)\n- `job_id` (str | None)\n\n**返回值**:`None`"}]}
|
| 6 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`build_image` 有什么功能?"}, {"role": "assistant", "content": "`build_image` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/docker.py`。\n**功能描述**:\nBuild a Docker image. Args: dockerfile: Path to Dockerfile tag: Image tag context: Build context directory Raises: DockerComposeError: If build fails\n**函数签名**:\n```python\ndef build_image(dockerfile: Path, tag: str, context: Path) -> None:\n```\n**参数**:\n- `dockerfile` (Path): Path to Dockerfile\n- `tag` (str)\n- `context` (Path)\n\n**返回值**:`None`"}]}
|
| 7 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `BackendFactory` 的作用。"}, {"role": "assistant", "content": "`BackendFactory` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/config.py`。\n**功能描述**:\nFactory for creating backend instances based on configuration. Provides pluggable implementations for queue, database, LLM, and cache.\n**函数签名**:\n```python\nclass BackendFactory:\n```"}]}
|
| 8 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`compose_logs` 有什么功能?"}, {"role": "assistant", "content": "`compose_logs` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/docker.py`。\n**功能描述**:\nView logs for a Docker Compose service. Args: service: Service name follow: Follow log output (default: False) tail: Number of lines to show from end (default: all) Raises: DockerComposeError: If compose logs fails\n**函数签名**:\n```python\ndef compose_logs(\nservice: str,\nfollow: bool = False,\ntail: int | None = None,\n) -> None:\n```\n**参数**:\n- `service` (str): Service name\n- `follow` (bool)\n- `tail` (int | None)\n\n**返回值**:`None`"}]}
|
| 9 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`ProjectDetails.validate_name` 有什么功能?"}, {"role": "assistant", "content": "`ProjectDetails.validate_name` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/cli/utils/config.py`。\n**功能描述**:\nValidate project name format.\n**函数签名**:\n```python\ndef validate_name(cls, v: str) -> str:\n```\n**参数**:\n- `cls` (Any)\n- `v` (str)\n\n**返回值**:`str`"}]}
|
| 10 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `BackendFactory.create_database_backend` 函数?"}, {"role": "assistant", "content": "`BackendFactory.create_database_backend` 位于 `lib/laddr/src/laddr/core/config.py`,使用方法如下:\n**参数说明**:\n\n**功能简述**:Create database backend based on config...."}]}
|
| 11 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`tool` 有什么功能?"}, {"role": "assistant", "content": "`tool` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/core/tooling.py`。\n**功能描述**:\nDecorator to mark a function as an agent tool. Usage: @tool(name=\"web_search\", description=\"Search the web\") def search(query: str) -> dict: return {\"results\": [...]} Or with Pydantic input model: class SearchInput(BaseModel): query: str limit: int = 10 @tool() def search(inputs: SearchInput) -> dict: return {\"results\": [...]} The decorator attaches metadata to the function as __laddr_tool__.\n**函数签名**:\n```python\ndef tool(\nname: str | None = None,\ndescription: str | None = None,\n*,\ntrace: bool = True,\n```\n**参数**:\n- `name` (str | None)\n- `description` (str | None)\n\n**返回值**:`None`"}]}
|
| 12 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ToolRegistry.__init__` 函数?"}, {"role": "assistant", "content": "`ToolRegistry.__init__` 位于 `lib/laddr/src/laddr/core/tooling.py`,使用方法如下:\n**参数说明**:"}]}
|
| 13 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `decorator` 函数?"}, {"role": "assistant", "content": "`decorator` 位于 `lib/laddr/src/laddr/core/system_tools.py`,使用方法如下:\n```python\ndecorator(func=...)\n```\n**参数说明**:\n- `func`: Callable"}]}
|
| 14 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `run` 的作用。"}, {"role": "assistant", "content": "`run` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/commands/run.py`。\n**功能描述**:\nRun environments, agents, or pipelines. Usage: laddr run dev [--build] [--no-detach] laddr run agent <agent_name> [--inputs '{...}'] laddr run pipeline <file.yml>\n**函数签名**:\n```python\ndef run(ctx: click.Context):\n```\n**参数**:\n- `ctx` (click.Context)\n\n**返回值**:`None`"}]}
|
| 15 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`AgentRunner.replay` 方法在哪个文件里?"}, {"role": "assistant", "content": "`AgentRunner.replay` 位于 `lib/laddr/src/laddr/core/runtime_entry.py`。"}]}
|
| 16 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `nearest_whitespace` 函数?"}, {"role": "assistant", "content": "`nearest_whitespace` 位于 `lib/laddr/src/laddr/core/system_tools.py`,使用方法如下:\n```python\nnearest_whitespace(target=..., low=..., high=...)\n```\n**参数说明**:\n- `target`: int\n- `low`: int\n- `high`: int"}]}
|
| 17 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`prompt` 函数在哪个文件里?"}, {"role": "assistant", "content": "`prompt` 位于 `lib/laddr/src/laddr/cli/commands/prompt.py`。"}]}
|
| 18 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `OllamaLLM.__init__` 函数?"}, {"role": "assistant", "content": "`OllamaLLM.__init__` 位于 `lib/laddr/src/laddr/core/llm.py`,使用方法如下:\n```python\nOllamaLLM.__init__(base_url=..., model=...)\n```\n**参数说明**:\n- `base_url`: str | None\n- `model`: str | None"}]}
|
| 19 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`GrokLLM` 类在哪个文件里?"}, {"role": "assistant", "content": "`GrokLLM` 位于 `lib/laddr/src/laddr/core/llm.py`。"}]}
|
| 20 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`MCPToolRegistry` 类在哪个文件里?"}, {"role": "assistant", "content": "`MCPToolRegistry` 位于 `lib/laddr/src/laddr/core/mcp_client.py`。"}]}
|
| 21 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `RedisCache.__init__` 函数?"}, {"role": "assistant", "content": "`RedisCache.__init__` 位于 `lib/laddr/src/laddr/core/cache.py`,使用方法如下:\n```python\nRedisCache.__init__(redis_url=...)\n```\n**参数说明**:\n- `redis_url`: str"}]}
|
| 22 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `InMemoryCache.delete` 函数?"}, {"role": "assistant", "content": "`InMemoryCache.delete` 位于 `lib/laddr/src/laddr/core/cache.py`,使用方法如下:\n```python\nInMemoryCache.delete(key=...)\n```\n**参数说明**:\n- `key`: str\n\n**功能简述**:Delete value from cache...."}]}
|
| 23 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`ProjectConfig` 有什么功能?"}, {"role": "assistant", "content": "`ProjectConfig` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/config.py`。\n**功能描述**:\nProject configuration from laddr.yml. Defines which agents exist and backend preferences.\n**函数签名**:\n```python\nclass ProjectConfig(BaseModel):\n```"}]}
|
| 24 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `EventThrottler` 的作用。"}, {"role": "assistant", "content": "`EventThrottler` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/api/main.py`。\n**功能描述**:\nThrottle WebSocket events to avoid overwhelming clients.\n**函数签名**:\n```python\nclass EventThrottler:\n```"}]}
|
| 25 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `AgentRunner._discover_local_agents` 函数?"}, {"role": "assistant", "content": "`AgentRunner._discover_local_agents` 位于 `lib/laddr/src/laddr/core/runtime_entry.py`,使用方法如下:\n```python\nAgentRunner._discover_local_agents(exclude=...)\n```\n**参数说明**:\n- `exclude`: list[str] | None\n\n**功能简述**:Discover local agents under the 'agents' package for inline execution...."}]}
|
| 26 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AgentRunner.__init__` 有什么功能?"}, {"role": "assistant", "content": "`AgentRunner.__init__` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/runtime_entry.py`。\n**功能描述**:\nInitialize runner. Args: agent: Agent instance (created if None) env_config: Environment configuration\n**函数签名**:\n```python\ndef __init__(\nself,\nagent: Agent | None = None,\nenv_config: LaddrConfig | None = None\n):\n```\n**参数**:\n- `self` (Any)\n- `agent` (Agent | None): Agent instance (created if None)\n- `env_config` (LaddrConfig | None)\n\n**返回值**:`None`"}]}
|
| 27 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`add_tool` 函数在哪个文件里?"}, {"role": "assistant", "content": "`add_tool` 位于 `lib/laddr/src/laddr/cli/commands/add.py`。"}]}
|
| 28 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ps` 函数?"}, {"role": "assistant", "content": "`ps` 位于 `lib/laddr/src/laddr/cli/commands/management.py`,使用方法如下:\n```python\nps(format=...)\n```\n**参数说明**:\n- `format`: str\n\n**功能简述**:Show status of all services and workers. Examples: laddr ps laddr ps --format json..."}]}
|
| 29 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `discover_tools` 函数?"}, {"role": "assistant", "content": "`discover_tools` 位于 `lib/laddr/src/laddr/core/tooling.py`,使用方法如下:\n```python\ndiscover_tools(agent_name=...)\n```\n**参数说明**:\n- `agent_name`: str - Name of the agent (e.g., \"researcher\")\n\n**功能简述**:Auto-discover tools for an agent from agents.<agent_name>.tools package. Scans for: 1. Functions decorated with @tool 2. Functions named 'run' (fallback) Args: agent_name: Name of the agent (e.g., \"re..."}]}
|
| 30 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `MCPToolRegistry.__init__` 函数?"}, {"role": "assistant", "content": "`MCPToolRegistry.__init__` 位于 `lib/laddr/src/laddr/core/mcp_client.py`,使用方法如下:\n**参数说明**:"}]}
|
| 31 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`Agent` 有什么功能?"}, {"role": "assistant", "content": "`Agent` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nBase Agent class with full runtime capabilities. Provides: - Planning and execution - Tool calling with validation and caching - Delegation with blocking wait for responses - Memory storage - Auto-registration on message bus - Trace logging to database Subclasses should override plan() method for custom planning logic, or use the default autonomous_run() for intelligent LLM-driven execution.\n**函数签名**:\n```python\nclass Agent:\n```"}]}
|
| 32 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `run` 函数?"}, {"role": "assistant", "content": "`run` 位于 `lib/laddr/src/laddr/cli/commands/run.py`,使用方法如下:\n```python\nrun(ctx=...)\n```\n**参数说明**:\n- `ctx`: click.Context\n\n**功能简述**:Run environments, agents, or pipelines. Usage: laddr run dev [--build] [--no-detach] laddr run agent <agent_name> [--inputs '{...}'] laddr run pipeline <file.yml>..."}]}
|
| 33 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `print_header` 函数?"}, {"role": "assistant", "content": "`print_header` 位于 `lib/laddr/src/laddr/cli/utils/logger.py`,使用方法如下:\n```python\nprint_header(text=..., style=...)\n```\n**参数说明**:\n- `text`: str - Header text\n- `style`: str\n\n**功能简述**:Print a minimalistic header. Args: text: Header text style: Text style (default: bold cyan)..."}]}
|
| 34 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ArtifactStorageTool.__init__` 函数?"}, {"role": "assistant", "content": "`ArtifactStorageTool.__init__` 位于 `lib/laddr/src/laddr/core/system_tools.py`,使用方法如下:\n```python\nArtifactStorageTool.__init__(storage_backend=..., default_bucket=...)\n```\n**参数说明**:\n- `storage_backend`: Any - Storage backend (MinIO/S3)\n- `default_bucket`: str | None\n\n**功能简述**:Initialize artifact storage tool. Args: storage_backend: Storage backend (MinIO/S3)..."}]}
|
| 35 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ollama` 函数?"}, {"role": "assistant", "content": "`ollama` 位于 `lib/laddr/src/laddr/llms.py`,使用方法如下:\n```python\nollama(model=..., temperature=..., base_url=...)\n```\n**参数说明**:\n- `model`: str | None\n- `temperature`: float | None\n- `base_url`: str | None\n\n**功能简述**:Create a local Ollama backend instance. Example: llm = ollama(model=\"gemma2:2b\", base_url=\"http://localhost:11434\")..."}]}
|
| 36 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`anthropic` 函数在哪个文件里?"}, {"role": "assistant", "content": "`anthropic` 位于 `lib/laddr/src/laddr/llms.py`。"}]}
|
| 37 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `compose_scale` 是做什么的?"}, {"role": "assistant", "content": "`compose_scale` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/docker.py`。\n**功能描述**:\nScale a Docker Compose service. Args: service: Service name replicas: Number of replicas Raises: DockerComposeError: If scaling fails\n**函数签名**:\n```python\ndef compose_scale(service: str, replicas: int) -> None:\n```\n**参数**:\n- `service` (str): Service name\n- `replicas` (int)\n\n**返回值**:`None`"}]}
|
| 38 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `ToolRegistry.register` 的作用。"}, {"role": "assistant", "content": "`ToolRegistry.register` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/tooling.py`。\n**功能描述**:\nRegister a tool with optional aliases. Args: tool_obj: Tool instance or callable to register name: Optional explicit name (overrides tool_obj.name) aliases: Optional list of alias names that resolve to this tool\n**函数签名**:\n```python\ndef register(self, tool_obj: Tool | Callable, name: str | None = None, aliases: list[str] | None = None) -> None:\n```\n**参数**:\n- `self` (Any)\n- `tool_obj` (Tool | Callable): Tool instance or callable to register\n- `name` (str | None)\n- `aliases` (list[str] | None)\n\n**返回值**:`None`"}]}
|
| 39 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `GroqLLM.__init__` 函数?"}, {"role": "assistant", "content": "`GroqLLM.__init__` 位于 `lib/laddr/src/laddr/core/llm.py`,使用方法如下:\n```python\nGroqLLM.__init__(api_key=..., model=...)\n```\n**参数说明**:\n- `api_key`: str | None\n- `model`: str | None"}]}
|
| 40 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `AnthropicLLM.__init__` 函数?"}, {"role": "assistant", "content": "`AnthropicLLM.__init__` 位于 `lib/laddr/src/laddr/core/llm.py`,使用方法如下:\n```python\nAnthropicLLM.__init__(api_key=..., model=...)\n```\n**参数说明**:\n- `api_key`: str | None\n- `model`: str | None"}]}
|
| 41 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AnthropicLLM` 有什么功能?"}, {"role": "assistant", "content": "`AnthropicLLM` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/llm.py`。\n**功能描述**:\nAnthropic LLM backend.\n**函数签名**:\n```python\nclass AnthropicLLM:\n```"}]}
|
| 42 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`print_header` 有什么功能?"}, {"role": "assistant", "content": "`print_header` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint a minimalistic header. Args: text: Header text style: Text style (default: bold cyan)\n**函数签名**:\n```python\ndef print_header(text: str, style: str = \"bold cyan\") -> None:\n```\n**参数**:\n- `text` (str): Header text\n- `style` (str)\n\n**返回值**:`None`"}]}
|
| 43 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `print_completion` 函数?"}, {"role": "assistant", "content": "`print_completion` 位于 `lib/laddr/src/laddr/cli/utils/logger.py`,使用方法如下:\n```python\nprint_completion(message=...)\n```\n**参数说明**:\n- `message`: str - Completion message\n\n**功能简述**:Print a completion message with checkmark. Args: message: Completion message..."}]}
|
| 44 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `S3Storage._get_client` 是做什么的?"}, {"role": "assistant", "content": "`S3Storage._get_client` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/storage.py`。\n**功能描述**:\nGet synchronous S3-compatible client.\n**函数签名**:\n```python\ndef _get_client(self):\n```\n**参数**:\n- `self` (Any)\n\n**返回值**:`None`"}]}
|
data/training_data/train.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/training_data/val.jsonl
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `print_step` 的作用。"}, {"role": "assistant", "content": "`print_step` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint a step in a process with minimalistic style. Args: step: Step name/action description: Optional description\n**函数签名**:\n```python\ndef print_step(step: str, description: str = \"\") -> None:\n```\n**参数**:\n- `step` (str): Step name/action\n- `description` (str)\n\n**返回值**:`None`"}]}
|
| 2 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`print_completion` 有什么功能?"}, {"role": "assistant", "content": "`print_completion` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint a completion message with checkmark. Args: message: Completion message\n**函数签名**:\n```python\ndef print_completion(message: str) -> None:\n```\n**参数**:\n- `message` (str): Completion message\n\n**返回值**:`None`"}]}
|
| 3 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`Agent._format_history_for_synthesis` 有什么功能?"}, {"role": "assistant", "content": "`Agent._format_history_for_synthesis` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nFormat execution history for final answer synthesis.\n**函数签名**:\n```python\ndef _format_history_for_synthesis(self, history: list[dict]) -> str:\n```\n**参数**:\n- `self` (Any)\n- `history` (list[dict])\n\n**返回值**:`str`"}]}
|
| 4 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `AgentMemory.list` 是做什么的?"}, {"role": "assistant", "content": "`AgentMemory.list` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nList all memory entries.\n**函数签名**:\n```python\ndef list(self) -> dict[str, Any]:\n```\n**参数**:\n- `self` (Any)\n\n**返回值**:`dict[str, Any]`"}]}
|
| 5 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `gemini` 函数?"}, {"role": "assistant", "content": "`gemini` 位于 `lib/laddr/src/laddr/llms.py`,使用方法如下:\n```python\ngemini(model=..., temperature=...)\n```\n**参数说明**:\n- `model`: str | None\n- `temperature`: float | None"}]}
|
| 6 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`TemplateRenderer.__init__` 方法在哪个文件里?"}, {"role": "assistant", "content": "`TemplateRenderer.__init__` 位于 `lib/laddr/src/laddr/cli/utils/templates.py`。"}]}
|
| 7 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`DatabaseService.get_trace` 有什么功能?"}, {"role": "assistant", "content": "`DatabaseService.get_trace` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nGet a single trace event by id with full payload.\n**函数签名**:\n```python\ndef get_trace(self, trace_id: str) -> dict | None:\n```\n**参数**:\n- `self` (Any)\n- `trace_id` (str)\n\n**返回值**:`dict | None`"}]}
|
| 8 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `Memory` 是做什么的?"}, {"role": "assistant", "content": "`Memory` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nAgent memory storage.\n**函数签名**:\n```python\nclass Memory(Base):\n```"}]}
|
| 9 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`ps` 函数在哪个文件里?"}, {"role": "assistant", "content": "`ps` 位于 `lib/laddr/src/laddr/cli/commands/management.py`。"}]}
|
| 10 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `ServiceNotReadyError` 是做什么的?"}, {"role": "assistant", "content": "`ServiceNotReadyError` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/cli/utils/errors.py`。\n**功能描述**:\nRaised when a service is not ready after startup.\n**函数签名**:\n```python\nclass ServiceNotReadyError(LaddrError):\n```"}]}
|
| 11 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `list_prompts` 是做什么的?"}, {"role": "assistant", "content": "`list_prompts` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/commands/prompt.py`。\n**功能描述**:\nList recent prompt executions.\n**函数签名**:\n```python\ndef list_prompts(limit: int):\n```\n**参数**:\n- `limit` (int)\n\n**返回值**:`None`"}]}
|
| 12 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseBackend.save_result` 函数?"}, {"role": "assistant", "content": "`DatabaseBackend.save_result` 位于 `lib/laddr/src/laddr/core/config.py`,使用方法如下:\n```python\nDatabaseBackend.save_result(job_id=..., outputs=...)\n```\n**参数说明**:\n- `job_id`: str\n- `outputs`: dict"}]}
|
| 13 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `OllamaLLM` 的作用。"}, {"role": "assistant", "content": "`OllamaLLM` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/llm.py`。\n**功能描述**:\nLocal Ollama LLM backend (talks to a local Ollama HTTP server). Default base URL: http://localhost:11434 Expected model names: e.g. \"gemma2:2b\" (use LLM_MODEL or per-agent LLM_MODEL_<AGENT>)\n**函数签名**:\n```python\nclass OllamaLLM:\n```"}]}
|
| 14 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `MemoryBus.__init__` 函数?"}, {"role": "assistant", "content": "`MemoryBus.__init__` 位于 `lib/laddr/src/laddr/core/message_bus.py`,使用方法如下:\n**参数说明**:"}]}
|
| 15 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `add_tool` 函数?"}, {"role": "assistant", "content": "`add_tool` 位于 `lib/laddr/src/laddr/cli/commands/add.py`,使用方法如下:\n```python\nadd_tool(tool_name=..., agent=..., description=...)\n```\n**参数说明**:\n- `tool_name`: str\n- `agent`: str | None\n- `description`: str | None\n\n**功能简述**:Add a new tool to an agent. Examples: laddr add tool calculator laddr add tool scraper --agent researcher..."}]}
|
| 16 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `BackendFactory.create_cache_backend` 函数?"}, {"role": "assistant", "content": "`BackendFactory.create_cache_backend` 位于 `lib/laddr/src/laddr/core/config.py`,使用方法如下:\n**参数说明**:\n\n**功能简述**:Create cache backend based on config...."}]}
|
| 17 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AgentRegistry` 有什么功能?"}, {"role": "assistant", "content": "`AgentRegistry` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nAgent registration and metadata.\n**函数签名**:\n```python\nclass AgentRegistry(Base):\n```"}]}
|
| 18 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `ProjectDetails.validate_name` 函数?"}, {"role": "assistant", "content": "`ProjectDetails.validate_name` 位于 `lib/laddr/src/laddr/cli/utils/config.py`,使用方法如下:\n```python\nProjectDetails.validate_name(cls=..., v=...)\n```\n**参数说明**:\n- `cls`: Any\n- `v`: str\n\n**功能简述**:Validate project name format...."}]}
|
| 19 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`TemplateRenderer` 类在哪个文件里?"}, {"role": "assistant", "content": "`TemplateRenderer` 位于 `lib/laddr/src/laddr/cli/utils/templates.py`。"}]}
|
| 20 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `MemoryBus` 是做什么的?"}, {"role": "assistant", "content": "`MemoryBus` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/message_bus.py`。\n**功能描述**:\nIn-memory message bus for testing and quick local dev. Not suitable for production or distributed systems.\n**函数签名**:\n```python\nclass MemoryBus:\n```"}]}
|
| 21 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `Agent.__init__` 的作用。"}, {"role": "assistant", "content": "`Agent.__init__` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nInitialize agent. Args: config: Agent-specific configuration env_config: Environment configuration (loaded if None) tools: Tool registry (auto-discovered if None)\n**函数签名**:\n```python\ndef __init__(\nself,\nconfig: AgentConfig,\nenv_config: LaddrConfig | None = None,\ntools: ToolRegistry | list[Any] | None = None,\n```\n**参数**:\n- `self` (Any)\n- `config` (AgentConfig): Agent-specific configuration\n- `env_config` (LaddrConfig | None)\n- `tools` (ToolRegistry | list[Any] | None)\n\n**返回值**:`None`"}]}
|
| 22 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `Tool.validate_inputs` 函数?"}, {"role": "assistant", "content": "`Tool.validate_inputs` 位于 `lib/laddr/src/laddr/core/tooling.py`,使用方法如下:\n```python\nTool.validate_inputs(inputs=...)\n```\n**参数说明**:\n- `inputs`: dict[str, Any]\n\n**功能简述**:Validate inputs against input_model if available. Returns validated inputs or raises ValidationError...."}]}
|
| 23 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `bind_tools` 是做什么的?"}, {"role": "assistant", "content": "`bind_tools` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/core/tooling.py`。\n**功能描述**:\nBind tools to an agent instance for explicit, readable tool registration. Supports: - String names: auto-import from agents.<agent>.tools.<name> - Callables: register directly - Decorated functions: extract Tool metadata Usage: from agents.researcher.tools import web_search bind_tools(self, [web_search.run, \"summarize\"]) Args: agent_instance: Agent instance with .tools registry tools: List of tool names (str) or callables\n**函数签名**:\n```python\ndef bind_tools(agent_instance: Any, tools: list[str | Callable]) -> None:\n```\n**参数**:\n- `agent_instance` (Any): Agent instance with .tools registry\n- `tools` (list[str | Callable])\n\n**返回值**:`None`"}]}
|
| 24 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`gemini` 函数在哪个文件里?"}, {"role": "assistant", "content": "`gemini` 位于 `lib/laddr/src/laddr/llms.py`。"}]}
|
| 25 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `init` 函数?"}, {"role": "assistant", "content": "`init` 位于 `lib/laddr/src/laddr/cli/commands/init.py`,使用方法如下:\n```python\ninit(project_name=..., path=...)\n```\n**参数说明**:\n- `project_name`: str | None\n- `path`: str\n\n**功能简述**:Initialize a new Laddr project. Creates project structure with: - Configuration files (laddr.yml, .env) - Docker setup (docker-compose.yml, Dockerfile) - Default researcher agent - Example tools and p..."}]}
|
| 26 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AgentChatRequest` 有什么功能?"}, {"role": "assistant", "content": "`AgentChatRequest` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/api/main.py`。\n**功能描述**:\nRequest to chat with an agent.\n**函数签名**:\n```python\nclass AgentChatRequest(BaseModel):\n```"}]}
|
| 27 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`AgentMemory.get` 有什么功能?"}, {"role": "assistant", "content": "`AgentMemory.get` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nRetrieve a memory entry.\n**函数签名**:\n```python\ndef get(self, key: str) -> Any:\n```\n**参数**:\n- `self` (Any)\n- `key` (str)\n\n**返回值**:`Any`"}]}
|
| 28 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseService.list_prompts` 函数?"}, {"role": "assistant", "content": "`DatabaseService.list_prompts` 位于 `lib/laddr/src/laddr/core/database.py`,使用方法如下:\n```python\nDatabaseService.list_prompts(limit=...)\n```\n**参数说明**:\n- `limit`: int\n\n**功能简述**:List recent prompt executions...."}]}
|
| 29 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`wrap_with_runtime_injection` 函数在哪个文件里?"}, {"role": "assistant", "content": "`wrap_with_runtime_injection` 位于 `lib/laddr/src/laddr/core/system_tools.py`。"}]}
|
| 30 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `_print_service_info` 的作用。"}, {"role": "assistant", "content": "`_print_service_info` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/commands/run.py`。\n**功能描述**:\nPrint service URLs in minimalistic style.\n**函数签名**:\n```python\ndef _print_service_info() -> None:\n```\n**返回值**:`None`"}]}
|
| 31 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`ProjectDetails.validate_name` 方法在哪个文件里?"}, {"role": "assistant", "content": "`ProjectDetails.validate_name` 位于 `lib/laddr/src/laddr/cli/utils/config.py`。"}]}
|
| 32 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`PipelineStage` 有什么功能?"}, {"role": "assistant", "content": "`PipelineStage` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/config.py`。\n**功能描述**:\nStage definition in a pipeline (simplified).\n**函数签名**:\n```python\nclass PipelineStage(BaseModel):\n```"}]}
|
| 33 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `_build_trace_tree` 的作用。"}, {"role": "assistant", "content": "`_build_trace_tree` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/api/main.py`。\n**功能描述**:\nBuild hierarchical trace tree from flat traces. Groups by agent runs and nests tool calls/LLM calls within them.\n**函数签名**:\n```python\ndef _build_trace_tree(traces: list[dict]) -> list[dict]:\n```\n**参数**:\n- `traces` (list[dict])\n\n**返回值**:`list[dict]`"}]}
|
| 34 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 项目中,`Agent._parse_autonomous_action` 有什么功能?"}, {"role": "assistant", "content": "`Agent._parse_autonomous_action` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/agent_runtime.py`。\n**功能描述**:\nParse LLM response to extract action, preferring JSON format with text fallback.\n**函数签名**:\n```python\ndef _parse_autonomous_action(self, response: str) -> dict:\n```\n**参数**:\n- `self` (Any)\n- `response` (str)\n\n**返回值**:`dict`"}]}
|
| 35 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `print_warning` 的作用。"}, {"role": "assistant", "content": "`print_warning` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint a warning message. Args: message: Warning message\n**函数签名**:\n```python\ndef print_warning(message: str) -> None:\n```\n**参数**:\n- `message` (str): Warning message\n\n**返回值**:`None`"}]}
|
| 36 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseService.get_job_traces` 函数?"}, {"role": "assistant", "content": "`DatabaseService.get_job_traces` 位于 `lib/laddr/src/laddr/core/database.py`,使用方法如下:\n```python\nDatabaseService.get_job_traces(job_id=...)\n```\n**参数说明**:\n- `job_id`: str\n\n**功能简述**:Get all traces for a job...."}]}
|
| 37 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseService.register_agent` 函数?"}, {"role": "assistant", "content": "`DatabaseService.register_agent` 位于 `lib/laddr/src/laddr/core/database.py`,使用方法如下:\n```python\nDatabaseService.register_agent(agent_name=..., metadata=...)\n```\n**参数说明**:\n- `agent_name`: str\n- `metadata`: dict\n\n**功能简述**:Register or update an agent in the registry...."}]}
|
| 38 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `DatabaseService.get_result` 函数?"}, {"role": "assistant", "content": "`DatabaseService.get_result` 位于 `lib/laddr/src/laddr/core/database.py`,使用方法如下:\n```python\nDatabaseService.get_result(job_id=...)\n```\n**参数说明**:\n- `job_id`: str\n\n**功能简述**:Get job result...."}]}
|
| 39 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `CacheBackend` 是做什么的?"}, {"role": "assistant", "content": "`CacheBackend` 是 Laddr 项目中的一个 类,位于 `lib/laddr/src/laddr/core/config.py`。\n**功能描述**:\nProtocol for cache backends.\n**函数签名**:\n```python\nclass CacheBackend(Protocol):\n```"}]}
|
| 40 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `Agent._trace` 函数?"}, {"role": "assistant", "content": "`Agent._trace` 位于 `lib/laddr/src/laddr/core/agent_runtime.py`,使用方法如下:\n```python\nAgent._trace(job_id=..., agent_name=..., event_type=..., payload=...)\n```\n**参数说明**:\n- `job_id`: str\n- `agent_name`: str\n- `event_type`: str\n- `payload`: dict\n\n**功能简述**:Append a trace if enabled and not masked...."}]}
|
| 41 |
+
{"conversations": [{"role": "user", "content": "如何在 Laddr 中使用 `Agent._parse_autonomous_action_text` 函数?"}, {"role": "assistant", "content": "`Agent._parse_autonomous_action_text` 位于 `lib/laddr/src/laddr/core/agent_runtime.py`,使用方法如下:\n```python\nAgent._parse_autonomous_action_text(response=...)\n```\n**参数说明**:\n- `response`: str\n\n**功能简述**:Parse legacy text format with ACTION:/AGENT:/TOOL_NAME:/... lines...."}]}
|
| 42 |
+
{"conversations": [{"role": "user", "content": "请解释 Laddr 中 `DatabaseService.create_prompt` 的作用。"}, {"role": "assistant", "content": "`DatabaseService.create_prompt` 是 Laddr 项目中的一个 方法,位于 `lib/laddr/src/laddr/core/database.py`。\n**功能描述**:\nCreate a new prompt execution record.\n**函数签名**:\n```python\ndef create_prompt(self, prompt_id: str | None, prompt_name: str, inputs: dict) -> str:\n```\n**参数**:\n- `self` (Any)\n- `prompt_id` (str | None)\n- `prompt_name` (str)\n- `inputs` (dict)\n\n**返回值**:`str`"}]}
|
| 43 |
+
{"conversations": [{"role": "user", "content": "在 Laddr 中,`DatabaseBackend.list_agents` 方法在哪个文件里?"}, {"role": "assistant", "content": "`DatabaseBackend.list_agents` 位于 `lib/laddr/src/laddr/core/config.py`。"}]}
|
| 44 |
+
{"conversations": [{"role": "user", "content": "Laddr 的 `print_table` 是做什么的?"}, {"role": "assistant", "content": "`print_table` 是 Laddr 项目中的一个 函数,位于 `lib/laddr/src/laddr/cli/utils/logger.py`。\n**功能描述**:\nPrint data as a rich table. Args: data: List of dictionaries (each dict is a row) title: Optional table title\n**函数签名**:\n```python\ndef print_table(data: list[dict], title: str | None = None) -> None:\n```\n**参数**:\n- `data` (list[dict]): List of dictionaries (each dict is a row)\n- `title` (str | None)\n\n**返回值**:`None`"}]}
|
output/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
output/finetuned_model/all_results.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 15.0,
|
| 3 |
+
"eval_loss": 0.36164844036102295,
|
| 4 |
+
"eval_runtime": 19.5939,
|
| 5 |
+
"eval_samples_per_second": 2.246,
|
| 6 |
+
"eval_steps_per_second": 0.561,
|
| 7 |
+
"total_flos": 4194690293760.0,
|
| 8 |
+
"train_loss": 0.13649824394731586,
|
| 9 |
+
"train_runtime": 4647.838,
|
| 10 |
+
"train_samples_per_second": 1.136,
|
| 11 |
+
"train_steps_per_second": 0.036
|
| 12 |
+
}
|
output/finetuned_model/checkpoint-100/README.md
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen3-8B
|
| 3 |
+
library_name: peft
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
tags:
|
| 6 |
+
- base_model:adapter:Qwen/Qwen3-8B
|
| 7 |
+
- lora
|
| 8 |
+
- transformers
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for Model ID
|
| 12 |
+
|
| 13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
### Model Description
|
| 20 |
+
|
| 21 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
- **Developed by:** [More Information Needed]
|
| 26 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 27 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 28 |
+
- **Model type:** [More Information Needed]
|
| 29 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 30 |
+
- **License:** [More Information Needed]
|
| 31 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 32 |
+
|
| 33 |
+
### Model Sources [optional]
|
| 34 |
+
|
| 35 |
+
<!-- Provide the basic links for the model. -->
|
| 36 |
+
|
| 37 |
+
- **Repository:** [More Information Needed]
|
| 38 |
+
- **Paper [optional]:** [More Information Needed]
|
| 39 |
+
- **Demo [optional]:** [More Information Needed]
|
| 40 |
+
|
| 41 |
+
## Uses
|
| 42 |
+
|
| 43 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 44 |
+
|
| 45 |
+
### Direct Use
|
| 46 |
+
|
| 47 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 48 |
+
|
| 49 |
+
[More Information Needed]
|
| 50 |
+
|
| 51 |
+
### Downstream Use [optional]
|
| 52 |
+
|
| 53 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 54 |
+
|
| 55 |
+
[More Information Needed]
|
| 56 |
+
|
| 57 |
+
### Out-of-Scope Use
|
| 58 |
+
|
| 59 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 60 |
+
|
| 61 |
+
[More Information Needed]
|
| 62 |
+
|
| 63 |
+
## Bias, Risks, and Limitations
|
| 64 |
+
|
| 65 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 66 |
+
|
| 67 |
+
[More Information Needed]
|
| 68 |
+
|
| 69 |
+
### Recommendations
|
| 70 |
+
|
| 71 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 72 |
+
|
| 73 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 74 |
+
|
| 75 |
+
## How to Get Started with the Model
|
| 76 |
+
|
| 77 |
+
Use the code below to get started with the model.
|
| 78 |
+
|
| 79 |
+
[More Information Needed]
|
| 80 |
+
|
| 81 |
+
## Training Details
|
| 82 |
+
|
| 83 |
+
### Training Data
|
| 84 |
+
|
| 85 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 86 |
+
|
| 87 |
+
[More Information Needed]
|
| 88 |
+
|
| 89 |
+
### Training Procedure
|
| 90 |
+
|
| 91 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 92 |
+
|
| 93 |
+
#### Preprocessing [optional]
|
| 94 |
+
|
| 95 |
+
[More Information Needed]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
#### Training Hyperparameters
|
| 99 |
+
|
| 100 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 101 |
+
|
| 102 |
+
#### Speeds, Sizes, Times [optional]
|
| 103 |
+
|
| 104 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 105 |
+
|
| 106 |
+
[More Information Needed]
|
| 107 |
+
|
| 108 |
+
## Evaluation
|
| 109 |
+
|
| 110 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 111 |
+
|
| 112 |
+
### Testing Data, Factors & Metrics
|
| 113 |
+
|
| 114 |
+
#### Testing Data
|
| 115 |
+
|
| 116 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
+
|
| 118 |
+
[More Information Needed]
|
| 119 |
+
|
| 120 |
+
#### Factors
|
| 121 |
+
|
| 122 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 123 |
+
|
| 124 |
+
[More Information Needed]
|
| 125 |
+
|
| 126 |
+
#### Metrics
|
| 127 |
+
|
| 128 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 129 |
+
|
| 130 |
+
[More Information Needed]
|
| 131 |
+
|
| 132 |
+
### Results
|
| 133 |
+
|
| 134 |
+
[More Information Needed]
|
| 135 |
+
|
| 136 |
+
#### Summary
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
## Model Examination [optional]
|
| 141 |
+
|
| 142 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 143 |
+
|
| 144 |
+
[More Information Needed]
|
| 145 |
+
|
| 146 |
+
## Environmental Impact
|
| 147 |
+
|
| 148 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 149 |
+
|
| 150 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 151 |
+
|
| 152 |
+
- **Hardware Type:** [More Information Needed]
|
| 153 |
+
- **Hours used:** [More Information Needed]
|
| 154 |
+
- **Cloud Provider:** [More Information Needed]
|
| 155 |
+
- **Compute Region:** [More Information Needed]
|
| 156 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
+
|
| 158 |
+
## Technical Specifications [optional]
|
| 159 |
+
|
| 160 |
+
### Model Architecture and Objective
|
| 161 |
+
|
| 162 |
+
[More Information Needed]
|
| 163 |
+
|
| 164 |
+
### Compute Infrastructure
|
| 165 |
+
|
| 166 |
+
[More Information Needed]
|
| 167 |
+
|
| 168 |
+
#### Hardware
|
| 169 |
+
|
| 170 |
+
[More Information Needed]
|
| 171 |
+
|
| 172 |
+
#### Software
|
| 173 |
+
|
| 174 |
+
[More Information Needed]
|
| 175 |
+
|
| 176 |
+
## Citation [optional]
|
| 177 |
+
|
| 178 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 179 |
+
|
| 180 |
+
**BibTeX:**
|
| 181 |
+
|
| 182 |
+
[More Information Needed]
|
| 183 |
+
|
| 184 |
+
**APA:**
|
| 185 |
+
|
| 186 |
+
[More Information Needed]
|
| 187 |
+
|
| 188 |
+
## Glossary [optional]
|
| 189 |
+
|
| 190 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 191 |
+
|
| 192 |
+
[More Information Needed]
|
| 193 |
+
|
| 194 |
+
## More Information [optional]
|
| 195 |
+
|
| 196 |
+
[More Information Needed]
|
| 197 |
+
|
| 198 |
+
## Model Card Authors [optional]
|
| 199 |
+
|
| 200 |
+
[More Information Needed]
|
| 201 |
+
|
| 202 |
+
## Model Card Contact
|
| 203 |
+
|
| 204 |
+
[More Information Needed]
|
| 205 |
+
### Framework versions
|
| 206 |
+
|
| 207 |
+
- PEFT 0.17.1
|
output/finetuned_model/checkpoint-100/adapter_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen3-8B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"corda_config": null,
|
| 7 |
+
"eva_config": null,
|
| 8 |
+
"exclude_modules": null,
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 128,
|
| 17 |
+
"lora_bias": false,
|
| 18 |
+
"lora_dropout": 0.05,
|
| 19 |
+
"megatron_config": null,
|
| 20 |
+
"megatron_core": "megatron.core",
|
| 21 |
+
"modules_to_save": null,
|
| 22 |
+
"peft_type": "LORA",
|
| 23 |
+
"qalora_group_size": 16,
|
| 24 |
+
"r": 64,
|
| 25 |
+
"rank_pattern": {},
|
| 26 |
+
"revision": null,
|
| 27 |
+
"target_modules": [
|
| 28 |
+
"q_proj",
|
| 29 |
+
"down_proj",
|
| 30 |
+
"o_proj",
|
| 31 |
+
"gate_proj",
|
| 32 |
+
"v_proj",
|
| 33 |
+
"up_proj",
|
| 34 |
+
"k_proj"
|
| 35 |
+
],
|
| 36 |
+
"target_parameters": null,
|
| 37 |
+
"task_type": "CAUSAL_LM",
|
| 38 |
+
"trainable_token_indices": null,
|
| 39 |
+
"use_dora": false,
|
| 40 |
+
"use_qalora": false,
|
| 41 |
+
"use_rslora": false
|
| 42 |
+
}
|
output/finetuned_model/checkpoint-100/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4bdb15b8b2fddfc07564cb9cc2628910883a425bca84faaa179995f91121f28
|
| 3 |
+
size 349244256
|
output/finetuned_model/checkpoint-100/added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
output/finetuned_model/checkpoint-100/chat_template.jinja
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{{- messages[0].content + '\n\n' }}
|
| 5 |
+
{%- endif %}
|
| 6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 7 |
+
{%- for tool in tools %}
|
| 8 |
+
{{- "\n" }}
|
| 9 |
+
{{- tool | tojson }}
|
| 10 |
+
{%- endfor %}
|
| 11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 12 |
+
{%- else %}
|
| 13 |
+
{%- if messages[0].role == 'system' %}
|
| 14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
| 15 |
+
{%- endif %}
|
| 16 |
+
{%- endif %}
|
| 17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
| 18 |
+
{%- for message in messages[::-1] %}
|
| 19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
| 20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
| 21 |
+
{%- set ns.multi_step_tool = false %}
|
| 22 |
+
{%- set ns.last_query_index = index %}
|
| 23 |
+
{%- endif %}
|
| 24 |
+
{%- endfor %}
|
| 25 |
+
{%- for message in messages %}
|
| 26 |
+
{%- if message.content is string %}
|
| 27 |
+
{%- set content = message.content %}
|
| 28 |
+
{%- else %}
|
| 29 |
+
{%- set content = '' %}
|
| 30 |
+
{%- endif %}
|
| 31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
| 32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
| 33 |
+
{%- elif message.role == "assistant" %}
|
| 34 |
+
{%- set reasoning_content = '' %}
|
| 35 |
+
{%- if message.reasoning_content is string %}
|
| 36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
| 37 |
+
{%- else %}
|
| 38 |
+
{%- if '</think>' in content %}
|
| 39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
| 40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
| 41 |
+
{%- endif %}
|
| 42 |
+
{%- endif %}
|
| 43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
| 44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
| 45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
| 46 |
+
{%- else %}
|
| 47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 48 |
+
{%- endif %}
|
| 49 |
+
{%- else %}
|
| 50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 51 |
+
{%- endif %}
|
| 52 |
+
{%- if message.tool_calls %}
|
| 53 |
+
{%- for tool_call in message.tool_calls %}
|
| 54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
| 55 |
+
{{- '\n' }}
|
| 56 |
+
{%- endif %}
|
| 57 |
+
{%- if tool_call.function %}
|
| 58 |
+
{%- set tool_call = tool_call.function %}
|
| 59 |
+
{%- endif %}
|
| 60 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 61 |
+
{{- tool_call.name }}
|
| 62 |
+
{{- '", "arguments": ' }}
|
| 63 |
+
{%- if tool_call.arguments is string %}
|
| 64 |
+
{{- tool_call.arguments }}
|
| 65 |
+
{%- else %}
|
| 66 |
+
{{- tool_call.arguments | tojson }}
|
| 67 |
+
{%- endif %}
|
| 68 |
+
{{- '}\n</tool_call>' }}
|
| 69 |
+
{%- endfor %}
|
| 70 |
+
{%- endif %}
|
| 71 |
+
{{- '<|im_end|>\n' }}
|
| 72 |
+
{%- elif message.role == "tool" %}
|
| 73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 74 |
+
{{- '<|im_start|>user' }}
|
| 75 |
+
{%- endif %}
|
| 76 |
+
{{- '\n<tool_response>\n' }}
|
| 77 |
+
{{- content }}
|
| 78 |
+
{{- '\n</tool_response>' }}
|
| 79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 80 |
+
{{- '<|im_end|>\n' }}
|
| 81 |
+
{%- endif %}
|
| 82 |
+
{%- endif %}
|
| 83 |
+
{%- endfor %}
|
| 84 |
+
{%- if add_generation_prompt %}
|
| 85 |
+
{{- '<|im_start|>assistant\n' }}
|
| 86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
| 87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
{%- endif %}
|
output/finetuned_model/checkpoint-100/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5db0035a11255731a939f91310dd0b203605027b8612e596757b9c0c9302768b
|
| 3 |
+
size 1047531685
|
output/finetuned_model/checkpoint-100/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40f28549882323943a7e3fb546378acb36aef4a8afa5be819e9a463439522eb2
|
| 3 |
+
size 1047531685
|
output/finetuned_model/checkpoint-100/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad8435c4684810b01226e6bd9356601fd67e07d616aea9fc706100f90778f351
|
| 3 |
+
size 504721
|
output/finetuned_model/checkpoint-100/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b8ea3e44dab4fe4bd0dc8c9d8b7e1b69fa0664df796447980d7d69185bb8182e
|
| 3 |
+
size 504721
|
output/finetuned_model/checkpoint-100/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step100
|
output/finetuned_model/checkpoint-100/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
output/finetuned_model/checkpoint-100/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11feaaeae1609ce17295b2ede1dd07125882006761ebeb4d125c8ba0a00acf6b
|
| 3 |
+
size 14917
|
output/finetuned_model/checkpoint-100/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a16d6396806fbc784f6e7bb03f2a7b4a6f569c964ccf5fe1bfadf6389e05af8f
|
| 3 |
+
size 14917
|
output/finetuned_model/checkpoint-100/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bedc55c2b89b8c70fee4c419e7d755566357dcab6a912093210f03702324e13
|
| 3 |
+
size 1465
|
output/finetuned_model/checkpoint-100/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
output/finetuned_model/checkpoint-100/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
| 3 |
+
size 11422654
|
output/finetuned_model/checkpoint-100/tokenizer_config.json
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"clean_up_tokenization_spaces": false,
|
| 231 |
+
"eos_token": "<|im_end|>",
|
| 232 |
+
"errors": "replace",
|
| 233 |
+
"extra_special_tokens": {},
|
| 234 |
+
"model_max_length": 131072,
|
| 235 |
+
"pad_token": "<|endoftext|>",
|
| 236 |
+
"padding_side": "right",
|
| 237 |
+
"split_special_tokens": false,
|
| 238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 239 |
+
"unk_token": null
|
| 240 |
+
}
|
output/finetuned_model/checkpoint-100/trainer_state.json
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": 100,
|
| 3 |
+
"best_metric": 0.36164844036102295,
|
| 4 |
+
"best_model_checkpoint": "output/finetuned_model/checkpoint-100",
|
| 5 |
+
"epoch": 9.090909090909092,
|
| 6 |
+
"eval_steps": 100,
|
| 7 |
+
"global_step": 100,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.09090909090909091,
|
| 14 |
+
"grad_norm": 4.3420233726501465,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 2.8404,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.9090909090909091,
|
| 21 |
+
"grad_norm": 0.5920354127883911,
|
| 22 |
+
"learning_rate": 0.0005,
|
| 23 |
+
"loss": 1.3885,
|
| 24 |
+
"step": 10
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 1.8181818181818183,
|
| 28 |
+
"grad_norm": 0.37487199902534485,
|
| 29 |
+
"learning_rate": 0.0004949476630105669,
|
| 30 |
+
"loss": 0.3859,
|
| 31 |
+
"step": 20
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 2.7272727272727275,
|
| 35 |
+
"grad_norm": 0.4673846364021301,
|
| 36 |
+
"learning_rate": 0.0004799948609147061,
|
| 37 |
+
"loss": 0.1584,
|
| 38 |
+
"step": 30
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 3.6363636363636362,
|
| 42 |
+
"grad_norm": 0.2643900513648987,
|
| 43 |
+
"learning_rate": 0.0004557459664734141,
|
| 44 |
+
"loss": 0.0623,
|
| 45 |
+
"step": 40
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 4.545454545454545,
|
| 49 |
+
"grad_norm": 0.21961501240730286,
|
| 50 |
+
"learning_rate": 0.00042318108837739987,
|
| 51 |
+
"loss": 0.0477,
|
| 52 |
+
"step": 50
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 5.454545454545454,
|
| 56 |
+
"grad_norm": 0.14172837138175964,
|
| 57 |
+
"learning_rate": 0.00038361645653195025,
|
| 58 |
+
"loss": 0.0259,
|
| 59 |
+
"step": 60
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 6.363636363636363,
|
| 63 |
+
"grad_norm": 0.05771714448928833,
|
| 64 |
+
"learning_rate": 0.0003386512217606339,
|
| 65 |
+
"loss": 0.0128,
|
| 66 |
+
"step": 70
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 7.2727272727272725,
|
| 70 |
+
"grad_norm": 0.04812893271446228,
|
| 71 |
+
"learning_rate": 0.0002901028202144401,
|
| 72 |
+
"loss": 0.0076,
|
| 73 |
+
"step": 80
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 8.181818181818182,
|
| 77 |
+
"grad_norm": 0.03544061630964279,
|
| 78 |
+
"learning_rate": 0.0002399335149726463,
|
| 79 |
+
"loss": 0.0046,
|
| 80 |
+
"step": 90
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 9.090909090909092,
|
| 84 |
+
"grad_norm": 0.010216760449111462,
|
| 85 |
+
"learning_rate": 0.00019017108392811063,
|
| 86 |
+
"loss": 0.0036,
|
| 87 |
+
"step": 100
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 9.090909090909092,
|
| 91 |
+
"eval_loss": 0.36164844036102295,
|
| 92 |
+
"eval_runtime": 19.4544,
|
| 93 |
+
"eval_samples_per_second": 2.262,
|
| 94 |
+
"eval_steps_per_second": 0.565,
|
| 95 |
+
"step": 100
|
| 96 |
+
}
|
| 97 |
+
],
|
| 98 |
+
"logging_steps": 10,
|
| 99 |
+
"max_steps": 165,
|
| 100 |
+
"num_input_tokens_seen": 0,
|
| 101 |
+
"num_train_epochs": 15,
|
| 102 |
+
"save_steps": 100,
|
| 103 |
+
"stateful_callbacks": {
|
| 104 |
+
"TrainerControl": {
|
| 105 |
+
"args": {
|
| 106 |
+
"should_epoch_stop": false,
|
| 107 |
+
"should_evaluate": false,
|
| 108 |
+
"should_log": false,
|
| 109 |
+
"should_save": true,
|
| 110 |
+
"should_training_stop": false
|
| 111 |
+
},
|
| 112 |
+
"attributes": {}
|
| 113 |
+
}
|
| 114 |
+
},
|
| 115 |
+
"total_flos": 2537229926400.0,
|
| 116 |
+
"train_batch_size": 2,
|
| 117 |
+
"trial_name": null,
|
| 118 |
+
"trial_params": null
|
| 119 |
+
}
|
output/finetuned_model/checkpoint-100/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:26f3e70da891d4b4c03100e0214975b3f0494b364a6dd21c49136d030c4a1005
|
| 3 |
+
size 7825
|
output/finetuned_model/checkpoint-100/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
output/finetuned_model/checkpoint-100/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if ZERO_STAGE not in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info("Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info("Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
output/finetuned_model/checkpoint-165/README.md
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen3-8B
|
| 3 |
+
library_name: peft
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
tags:
|
| 6 |
+
- base_model:adapter:Qwen/Qwen3-8B
|
| 7 |
+
- lora
|
| 8 |
+
- transformers
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for Model ID
|
| 12 |
+
|
| 13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
### Model Description
|
| 20 |
+
|
| 21 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
- **Developed by:** [More Information Needed]
|
| 26 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 27 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 28 |
+
- **Model type:** [More Information Needed]
|
| 29 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 30 |
+
- **License:** [More Information Needed]
|
| 31 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 32 |
+
|
| 33 |
+
### Model Sources [optional]
|
| 34 |
+
|
| 35 |
+
<!-- Provide the basic links for the model. -->
|
| 36 |
+
|
| 37 |
+
- **Repository:** [More Information Needed]
|
| 38 |
+
- **Paper [optional]:** [More Information Needed]
|
| 39 |
+
- **Demo [optional]:** [More Information Needed]
|
| 40 |
+
|
| 41 |
+
## Uses
|
| 42 |
+
|
| 43 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 44 |
+
|
| 45 |
+
### Direct Use
|
| 46 |
+
|
| 47 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 48 |
+
|
| 49 |
+
[More Information Needed]
|
| 50 |
+
|
| 51 |
+
### Downstream Use [optional]
|
| 52 |
+
|
| 53 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 54 |
+
|
| 55 |
+
[More Information Needed]
|
| 56 |
+
|
| 57 |
+
### Out-of-Scope Use
|
| 58 |
+
|
| 59 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 60 |
+
|
| 61 |
+
[More Information Needed]
|
| 62 |
+
|
| 63 |
+
## Bias, Risks, and Limitations
|
| 64 |
+
|
| 65 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 66 |
+
|
| 67 |
+
[More Information Needed]
|
| 68 |
+
|
| 69 |
+
### Recommendations
|
| 70 |
+
|
| 71 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 72 |
+
|
| 73 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 74 |
+
|
| 75 |
+
## How to Get Started with the Model
|
| 76 |
+
|
| 77 |
+
Use the code below to get started with the model.
|
| 78 |
+
|
| 79 |
+
[More Information Needed]
|
| 80 |
+
|
| 81 |
+
## Training Details
|
| 82 |
+
|
| 83 |
+
### Training Data
|
| 84 |
+
|
| 85 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 86 |
+
|
| 87 |
+
[More Information Needed]
|
| 88 |
+
|
| 89 |
+
### Training Procedure
|
| 90 |
+
|
| 91 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 92 |
+
|
| 93 |
+
#### Preprocessing [optional]
|
| 94 |
+
|
| 95 |
+
[More Information Needed]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
#### Training Hyperparameters
|
| 99 |
+
|
| 100 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 101 |
+
|
| 102 |
+
#### Speeds, Sizes, Times [optional]
|
| 103 |
+
|
| 104 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 105 |
+
|
| 106 |
+
[More Information Needed]
|
| 107 |
+
|
| 108 |
+
## Evaluation
|
| 109 |
+
|
| 110 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 111 |
+
|
| 112 |
+
### Testing Data, Factors & Metrics
|
| 113 |
+
|
| 114 |
+
#### Testing Data
|
| 115 |
+
|
| 116 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
+
|
| 118 |
+
[More Information Needed]
|
| 119 |
+
|
| 120 |
+
#### Factors
|
| 121 |
+
|
| 122 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 123 |
+
|
| 124 |
+
[More Information Needed]
|
| 125 |
+
|
| 126 |
+
#### Metrics
|
| 127 |
+
|
| 128 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 129 |
+
|
| 130 |
+
[More Information Needed]
|
| 131 |
+
|
| 132 |
+
### Results
|
| 133 |
+
|
| 134 |
+
[More Information Needed]
|
| 135 |
+
|
| 136 |
+
#### Summary
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
## Model Examination [optional]
|
| 141 |
+
|
| 142 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 143 |
+
|
| 144 |
+
[More Information Needed]
|
| 145 |
+
|
| 146 |
+
## Environmental Impact
|
| 147 |
+
|
| 148 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 149 |
+
|
| 150 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 151 |
+
|
| 152 |
+
- **Hardware Type:** [More Information Needed]
|
| 153 |
+
- **Hours used:** [More Information Needed]
|
| 154 |
+
- **Cloud Provider:** [More Information Needed]
|
| 155 |
+
- **Compute Region:** [More Information Needed]
|
| 156 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
+
|
| 158 |
+
## Technical Specifications [optional]
|
| 159 |
+
|
| 160 |
+
### Model Architecture and Objective
|
| 161 |
+
|
| 162 |
+
[More Information Needed]
|
| 163 |
+
|
| 164 |
+
### Compute Infrastructure
|
| 165 |
+
|
| 166 |
+
[More Information Needed]
|
| 167 |
+
|
| 168 |
+
#### Hardware
|
| 169 |
+
|
| 170 |
+
[More Information Needed]
|
| 171 |
+
|
| 172 |
+
#### Software
|
| 173 |
+
|
| 174 |
+
[More Information Needed]
|
| 175 |
+
|
| 176 |
+
## Citation [optional]
|
| 177 |
+
|
| 178 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 179 |
+
|
| 180 |
+
**BibTeX:**
|
| 181 |
+
|
| 182 |
+
[More Information Needed]
|
| 183 |
+
|
| 184 |
+
**APA:**
|
| 185 |
+
|
| 186 |
+
[More Information Needed]
|
| 187 |
+
|
| 188 |
+
## Glossary [optional]
|
| 189 |
+
|
| 190 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 191 |
+
|
| 192 |
+
[More Information Needed]
|
| 193 |
+
|
| 194 |
+
## More Information [optional]
|
| 195 |
+
|
| 196 |
+
[More Information Needed]
|
| 197 |
+
|
| 198 |
+
## Model Card Authors [optional]
|
| 199 |
+
|
| 200 |
+
[More Information Needed]
|
| 201 |
+
|
| 202 |
+
## Model Card Contact
|
| 203 |
+
|
| 204 |
+
[More Information Needed]
|
| 205 |
+
### Framework versions
|
| 206 |
+
|
| 207 |
+
- PEFT 0.17.1
|
output/finetuned_model/checkpoint-165/adapter_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen3-8B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"corda_config": null,
|
| 7 |
+
"eva_config": null,
|
| 8 |
+
"exclude_modules": null,
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 128,
|
| 17 |
+
"lora_bias": false,
|
| 18 |
+
"lora_dropout": 0.05,
|
| 19 |
+
"megatron_config": null,
|
| 20 |
+
"megatron_core": "megatron.core",
|
| 21 |
+
"modules_to_save": null,
|
| 22 |
+
"peft_type": "LORA",
|
| 23 |
+
"qalora_group_size": 16,
|
| 24 |
+
"r": 64,
|
| 25 |
+
"rank_pattern": {},
|
| 26 |
+
"revision": null,
|
| 27 |
+
"target_modules": [
|
| 28 |
+
"q_proj",
|
| 29 |
+
"down_proj",
|
| 30 |
+
"o_proj",
|
| 31 |
+
"gate_proj",
|
| 32 |
+
"v_proj",
|
| 33 |
+
"up_proj",
|
| 34 |
+
"k_proj"
|
| 35 |
+
],
|
| 36 |
+
"target_parameters": null,
|
| 37 |
+
"task_type": "CAUSAL_LM",
|
| 38 |
+
"trainable_token_indices": null,
|
| 39 |
+
"use_dora": false,
|
| 40 |
+
"use_qalora": false,
|
| 41 |
+
"use_rslora": false
|
| 42 |
+
}
|
output/finetuned_model/checkpoint-165/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3967b5fe0e7ae6170e9f8d2af8dad8d9c1488c73d5724ef1db8c1ddbba1de2f0
|
| 3 |
+
size 349244256
|
output/finetuned_model/checkpoint-165/added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
output/finetuned_model/checkpoint-165/chat_template.jinja
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{{- messages[0].content + '\n\n' }}
|
| 5 |
+
{%- endif %}
|
| 6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 7 |
+
{%- for tool in tools %}
|
| 8 |
+
{{- "\n" }}
|
| 9 |
+
{{- tool | tojson }}
|
| 10 |
+
{%- endfor %}
|
| 11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 12 |
+
{%- else %}
|
| 13 |
+
{%- if messages[0].role == 'system' %}
|
| 14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
| 15 |
+
{%- endif %}
|
| 16 |
+
{%- endif %}
|
| 17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
| 18 |
+
{%- for message in messages[::-1] %}
|
| 19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
| 20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
| 21 |
+
{%- set ns.multi_step_tool = false %}
|
| 22 |
+
{%- set ns.last_query_index = index %}
|
| 23 |
+
{%- endif %}
|
| 24 |
+
{%- endfor %}
|
| 25 |
+
{%- for message in messages %}
|
| 26 |
+
{%- if message.content is string %}
|
| 27 |
+
{%- set content = message.content %}
|
| 28 |
+
{%- else %}
|
| 29 |
+
{%- set content = '' %}
|
| 30 |
+
{%- endif %}
|
| 31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
| 32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
| 33 |
+
{%- elif message.role == "assistant" %}
|
| 34 |
+
{%- set reasoning_content = '' %}
|
| 35 |
+
{%- if message.reasoning_content is string %}
|
| 36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
| 37 |
+
{%- else %}
|
| 38 |
+
{%- if '</think>' in content %}
|
| 39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
| 40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
| 41 |
+
{%- endif %}
|
| 42 |
+
{%- endif %}
|
| 43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
| 44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
| 45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
| 46 |
+
{%- else %}
|
| 47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 48 |
+
{%- endif %}
|
| 49 |
+
{%- else %}
|
| 50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 51 |
+
{%- endif %}
|
| 52 |
+
{%- if message.tool_calls %}
|
| 53 |
+
{%- for tool_call in message.tool_calls %}
|
| 54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
| 55 |
+
{{- '\n' }}
|
| 56 |
+
{%- endif %}
|
| 57 |
+
{%- if tool_call.function %}
|
| 58 |
+
{%- set tool_call = tool_call.function %}
|
| 59 |
+
{%- endif %}
|
| 60 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 61 |
+
{{- tool_call.name }}
|
| 62 |
+
{{- '", "arguments": ' }}
|
| 63 |
+
{%- if tool_call.arguments is string %}
|
| 64 |
+
{{- tool_call.arguments }}
|
| 65 |
+
{%- else %}
|
| 66 |
+
{{- tool_call.arguments | tojson }}
|
| 67 |
+
{%- endif %}
|
| 68 |
+
{{- '}\n</tool_call>' }}
|
| 69 |
+
{%- endfor %}
|
| 70 |
+
{%- endif %}
|
| 71 |
+
{{- '<|im_end|>\n' }}
|
| 72 |
+
{%- elif message.role == "tool" %}
|
| 73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 74 |
+
{{- '<|im_start|>user' }}
|
| 75 |
+
{%- endif %}
|
| 76 |
+
{{- '\n<tool_response>\n' }}
|
| 77 |
+
{{- content }}
|
| 78 |
+
{{- '\n</tool_response>' }}
|
| 79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 80 |
+
{{- '<|im_end|>\n' }}
|
| 81 |
+
{%- endif %}
|
| 82 |
+
{%- endif %}
|
| 83 |
+
{%- endfor %}
|
| 84 |
+
{%- if add_generation_prompt %}
|
| 85 |
+
{{- '<|im_start|>assistant\n' }}
|
| 86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
| 87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
{%- endif %}
|
output/finetuned_model/checkpoint-165/global_step165/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c047a6448f39a1709f75ca908371d5c0d996437aeca11191907695094a1a5f59
|
| 3 |
+
size 1047531685
|
output/finetuned_model/checkpoint-165/global_step165/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7c1b75d37d0366dd4bf6cb199a4881cb0c1437d6553b544235fef6d10dc147a
|
| 3 |
+
size 1047531685
|
output/finetuned_model/checkpoint-165/global_step165/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e51cd9debf39609f3bab78aa077325c7d9a08d8d7d06a876ec9e5a04724a4818
|
| 3 |
+
size 504721
|
output/finetuned_model/checkpoint-165/global_step165/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56eb5f5f4334596a4ebd8265059cd8e6c2b65727397430dd17166c34959b427c
|
| 3 |
+
size 504721
|
output/finetuned_model/checkpoint-165/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step165
|
output/finetuned_model/checkpoint-165/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
output/finetuned_model/checkpoint-165/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e4105c99ac8eb33523066f111503ce7637a964f5a503fa603a8cdb2ea0be71a
|
| 3 |
+
size 14917
|
output/finetuned_model/checkpoint-165/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84264b6e5bb199107adcbe258f1bd9ffc4e2a1e7e0f7097c3e8f46113aeeb092
|
| 3 |
+
size 14917
|
output/finetuned_model/checkpoint-165/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4f4c7648800972a9eb6b3f5600e31f42ff22d228c98399ecf7b7b9711d81f46
|
| 3 |
+
size 1465
|
output/finetuned_model/checkpoint-165/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|