File size: 6,321 Bytes
9569063
 
 
 
 
 
 
 
 
 
 
2e9b8c3
 
 
 
 
 
 
9569063
 
 
 
 
 
 
9047d9e
 
 
e942f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9047d9e
 
 
 
 
e942f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9047d9e
9569063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: mit
base_model: MARIO-Math-Reasoning/AlphaMath-7B
tags:
- TensorBlock
- GGUF
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## MARIO-Math-Reasoning/AlphaMath-7B - GGUF

This repo contains GGUF format model files for [MARIO-Math-Reasoning/AlphaMath-7B](https://huggingface.co/MARIO-Math-Reasoning/AlphaMath-7B).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">🚀 Try it now! 🚀</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">👀 See what we built 👀</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">👀 See what we built 👀</a>
    </th>
  </tr>
</table>
## Prompt template

```
{system_prompt}{prompt}
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [AlphaMath-7B-Q2_K.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q2_K.gguf) | Q2_K | 2.718 GB | smallest, significant quality loss - not recommended for most purposes |
| [AlphaMath-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q3_K_S.gguf) | Q3_K_S | 3.138 GB | very small, high quality loss |
| [AlphaMath-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q3_K_M.gguf) | Q3_K_M | 3.461 GB | very small, high quality loss |
| [AlphaMath-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q3_K_L.gguf) | Q3_K_L | 3.746 GB | small, substantial quality loss |
| [AlphaMath-7B-Q4_0.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q4_0.gguf) | Q4_0 | 4.000 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [AlphaMath-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q4_K_S.gguf) | Q4_K_S | 4.025 GB | small, greater quality loss |
| [AlphaMath-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q4_K_M.gguf) | Q4_K_M | 4.223 GB | medium, balanced quality - recommended |
| [AlphaMath-7B-Q5_0.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q5_0.gguf) | Q5_0 | 4.811 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [AlphaMath-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q5_K_S.gguf) | Q5_K_S | 4.811 GB | large, low quality loss - recommended |
| [AlphaMath-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q5_K_M.gguf) | Q5_K_M | 4.926 GB | large, very low quality loss - recommended |
| [AlphaMath-7B-Q6_K.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q6_K.gguf) | Q6_K | 5.673 GB | very large, extremely low quality loss |
| [AlphaMath-7B-Q8_0.gguf](https://huggingface.co/tensorblock/AlphaMath-7B-GGUF/blob/main/AlphaMath-7B-Q8_0.gguf) | Q8_0 | 7.347 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/AlphaMath-7B-GGUF --include "AlphaMath-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/AlphaMath-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```