theprint commited on
Commit
5b9354f
·
verified ·
1 Parent(s): 4db453a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/gemma-3-1b-it
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ language: en
6
+ license: mit
7
+ tags:
8
+ - lora
9
+ - sft
10
+ - transformers
11
+ - trl
12
+ - unsloth
13
+ - fine-tuned
14
+ datasets:
15
+ - Vezora/Tested-22k-Python-Alpaca
16
+ ---
17
+ # Gemma3-Python-22k-1B
18
+
19
+ A fine-tuned Gemma 3 1B model, fine tuned on the Vezora/Tested-22k-Python-Alpaca dataset.
20
+
21
+ ## Model Details
22
+
23
+ This model is a fine-tuned version of google/gemma-3-1b-it using the Unsloth framework with LoRA (Low-Rank Adaptation) for efficient training.
24
+
25
+ - **Developed by:** theprint
26
+ - **Model type:** Causal Language Model (Fine-tuned with LoRA)
27
+ - **Language:** en
28
+ - **License:** mit
29
+ - **Base model:** google/gemma-3-1b-it
30
+ - **Fine-tuning method:** LoRA with rank 128
31
+
32
+ ## Intended Use
33
+
34
+ Light coding support (Python only), project feedback and brainstorming.
35
+
36
+
37
+ ## GGUF Quantized Versions
38
+
39
+ Quantized GGUF versions are available in the [theprint/Gemma3-Python-22k-1B-GGUF](https://huggingface.co/theprint/Gemma3-Python-22k-1B-GGUF) repo.
40
+
41
+ - `Gemma3-Python-22k-1B-f16.gguf` (2489.6 MB) - 16-bit float (original precision, largest file)
42
+ - `Gemma3-Python-22k-1B-q3_k_m.gguf` (850.9 MB) - 3-bit quantization (medium quality)
43
+ - `Gemma3-Python-22k-1B-q4_k_m.gguf` (966.7 MB) - 4-bit quantization (medium, recommended for most use cases)
44
+ - `Gemma3-Python-22k-1B-q5_k_m.gguf` (1027.9 MB) - 5-bit quantization (medium, good quality)
45
+ - `Gemma3-Python-22k-1B-q6_k.gguf` (1270.9 MB) - 6-bit quantization (high quality)
46
+ - `Gemma3-Python-22k-1B-q8_0.gguf` (1325.8 MB) - 8-bit quantization (very high quality)
47
+
48
+ ## Training Details
49
+
50
+ ### Training Data
51
+
52
+ The data set used is [Vezora/Tested-22k-Python-Alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca).
53
+
54
+ - **Dataset:** Vezora/Tested-22k-Python-Alpaca
55
+ - **Format:** alpaca
56
+
57
+ ### Training Procedure
58
+
59
+ - **Training epochs:** 2
60
+ - **LoRA rank:** 128
61
+ - **Learning rate:** 3e-05
62
+ - **Batch size:** 4
63
+ - **Framework:** Unsloth + transformers + PEFT
64
+ - **Hardware:** NVIDIA RTX 5090
65
+
66
+ ## Usage
67
+
68
+ ```python
69
+ from unsloth import FastLanguageModel
70
+ import torch
71
+
72
+ # Load model and tokenizer
73
+ model, tokenizer = FastLanguageModel.from_pretrained(
74
+ model_name="theprint/Gemma3-Python-22k-1B",
75
+ max_seq_length=4096,
76
+ dtype=None,
77
+ load_in_4bit=True,
78
+ )
79
+
80
+ # Enable inference mode
81
+ FastLanguageModel.for_inference(model)
82
+
83
+ # Example usage
84
+ inputs = tokenizer(["Your prompt here"], return_tensors="pt")
85
+ outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7)
86
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
87
+ print(response)
88
+ ```
89
+
90
+ ### Alternative Usage (Standard Transformers)
91
+
92
+ ```python
93
+ from transformers import AutoModelForCausalLM, AutoTokenizer
94
+ import torch
95
+
96
+ model = AutoModelForCausalLM.from_pretrained(
97
+ "theprint/Gemma3-Python-22k-1B",
98
+ torch_dtype=torch.float16,
99
+ device_map="auto"
100
+ )
101
+ tokenizer = AutoTokenizer.from_pretrained("theprint/Gemma3-Python-22k-1B")
102
+
103
+ # Example usage
104
+ messages = [
105
+ {"role": "system", "content": "You are a helpful assistant."},
106
+ {"role": "user", "content": "Your question here"}
107
+ ]
108
+
109
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
110
+ outputs = model.generate(inputs, max_new_tokens=256, temperature=0.7, do_sample=True)
111
+ response = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True)
112
+ print(response)
113
+ ```
114
+
115
+ ### Using with llama.cpp
116
+
117
+ ```bash
118
+ # Download a quantized version (q4_k_m recommended for most use cases)
119
+ wget https://huggingface.co/theprint/Gemma3-Python-22k-1B/resolve/main/gguf/Gemma3-Python-22k-1B-q4_k_m.gguf
120
+
121
+ # Run with llama.cpp
122
+ ./llama.cpp/main -m Gemma3-Python-22k-1B-q4_k_m.gguf -p "Your prompt here" -n 256
123
+ ```
124
+ ## Limitations
125
+
126
+ May provide incorrect information.
127
+
128
+ ## Citation
129
+
130
+ If you use this model, please cite:
131
+
132
+ ```bibtex
133
+ @misc{gemma3_python_22k_1b,
134
+ title={Gemma3-Python-22k-1B: Fine-tuned google/gemma-3-1b-it},
135
+ author={theprint},
136
+ year={2025},
137
+ publisher={Hugging Face},
138
+ url={https://huggingface.co/theprint/Gemma3-Python-22k-1B}
139
+ }
140
+ ```
141
+
142
+ ## Acknowledgments
143
+
144
+ - Base model: [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it)
145
+ - Training dataset: [Vezora/Tested-22k-Python-Alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca)
146
+ - Fine-tuning framework: [Unsloth](https://github.com/unslothai/unsloth)
147
+ - Quantization: [llama.cpp](https://github.com/ggerganov/llama.cpp)
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{'<start_of_turn>model
46
+ '}}
47
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_sliding_window_pattern": 6,
3
+ "architectures": [
4
+ "Gemma3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "attn_logit_softcapping": null,
9
+ "bos_token_id": 2,
10
+ "cache_implementation": "hybrid",
11
+ "eos_token_id": [
12
+ 1,
13
+ 106
14
+ ],
15
+ "final_logit_softcapping": null,
16
+ "head_dim": 256,
17
+ "hidden_activation": "gelu_pytorch_tanh",
18
+ "hidden_size": 1152,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 6912,
21
+ "layer_types": [
22
+ "sliding_attention",
23
+ "sliding_attention",
24
+ "sliding_attention",
25
+ "sliding_attention",
26
+ "sliding_attention",
27
+ "full_attention",
28
+ "sliding_attention",
29
+ "sliding_attention",
30
+ "sliding_attention",
31
+ "sliding_attention",
32
+ "sliding_attention",
33
+ "full_attention",
34
+ "sliding_attention",
35
+ "sliding_attention",
36
+ "sliding_attention",
37
+ "sliding_attention",
38
+ "sliding_attention",
39
+ "full_attention",
40
+ "sliding_attention",
41
+ "sliding_attention",
42
+ "sliding_attention",
43
+ "sliding_attention",
44
+ "sliding_attention",
45
+ "full_attention",
46
+ "sliding_attention",
47
+ "sliding_attention"
48
+ ],
49
+ "max_position_embeddings": 32768,
50
+ "model_type": "gemma3_text",
51
+ "num_attention_heads": 4,
52
+ "num_hidden_layers": 26,
53
+ "num_key_value_heads": 1,
54
+ "pad_token_id": 0,
55
+ "query_pre_attn_scalar": 256,
56
+ "rms_norm_eps": 1e-06,
57
+ "rope_local_base_freq": 10000,
58
+ "rope_scaling": null,
59
+ "rope_theta": 1000000,
60
+ "sliding_window": 512,
61
+ "torch_dtype": "float16",
62
+ "transformers_version": "4.53.2",
63
+ "use_cache": true,
64
+ "vocab_size": 262144
65
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 2,
3
+ "cache_implementation": "hybrid",
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 1,
7
+ 106
8
+ ],
9
+ "pad_token_id": 0,
10
+ "top_k": 64,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.53.2"
13
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bb1a41f9250efc5c087b320cf01554f0e53191fb8739a8ec161ec0ca4321a1e
3
+ size 1999887347
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff