import comfy.samplers import comfy.sample import torch from nodes import common_ksampler from .utils import expand_mask class KSamplerVariationsWithNoise: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL", ), "latent_image": ("LATENT", ), "main_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "variation_strength": ("FLOAT", {"default": 0.17, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}), #"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), #"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), #"return_with_leftover_noise": (["disable", "enable"], ), "variation_seed": ("INT:seed", {"default": 12345, "min": 0, "max": 0xffffffffffffffff}), "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "execute" CATEGORY = "essentials/sampling" # From https://github.com/BlenderNeko/ComfyUI_Noise/ def slerp(self, val, low, high): dims = low.shape low = low.reshape(dims[0], -1) high = high.reshape(dims[0], -1) low_norm = low/torch.norm(low, dim=1, keepdim=True) high_norm = high/torch.norm(high, dim=1, keepdim=True) low_norm[low_norm != low_norm] = 0.0 high_norm[high_norm != high_norm] = 0.0 omega = torch.acos((low_norm*high_norm).sum(1)) so = torch.sin(omega) res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high return res.reshape(dims) def prepare_mask(self, mask, shape): mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") mask = mask.expand((-1,shape[1],-1,-1)) if mask.shape[0] < shape[0]: mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]] return mask def execute(self, model, latent_image, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, variation_strength, variation_seed, denoise): if main_seed == variation_seed: variation_seed += 1 end_at_step = steps #min(steps, end_at_step) start_at_step = round(end_at_step - end_at_step * denoise) force_full_denoise = True disable_noise = True device = comfy.model_management.get_torch_device() # Generate base noise batch_size, _, height, width = latent_image["samples"].shape generator = torch.manual_seed(main_seed) base_noise = torch.randn((1, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).repeat(batch_size, 1, 1, 1).cpu() # Generate variation noise generator = torch.manual_seed(variation_seed) variation_noise = torch.randn((batch_size, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).cpu() slerp_noise = self.slerp(variation_strength, base_noise, variation_noise) # Calculate sigma comfy.model_management.load_model_gpu(model) sampler = comfy.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options) sigmas = sampler.sigmas sigma = sigmas[start_at_step] - sigmas[end_at_step] sigma /= model.model.latent_format.scale_factor sigma = sigma.detach().cpu().item() work_latent = latent_image.copy() work_latent["samples"] = latent_image["samples"].clone() + slerp_noise * sigma # if there's a mask we need to expand it to avoid artifacts, 5 pixels should be enough if "noise_mask" in latent_image: noise_mask = self.prepare_mask(latent_image["noise_mask"], latent_image['samples'].shape) work_latent["samples"] = noise_mask * work_latent["samples"] + (1-noise_mask) * latent_image["samples"] work_latent['noise_mask'] = expand_mask(latent_image["noise_mask"].clone(), 5, True) return common_ksampler(model, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) class KSamplerVariationsStochastic: @classmethod def INPUT_TYPES(s): return {"required":{ "model": ("MODEL",), "latent_image": ("LATENT", ), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 25, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "sampler": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "variation_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}), #"variation_sampler": (comfy.samplers.KSampler.SAMPLERS, ), "cfg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}), }} RETURN_TYPES = ("LATENT", ) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, model, latent_image, noise_seed, steps, cfg, sampler, scheduler, positive, negative, variation_seed, variation_strength, cfg_scale, variation_sampler="dpmpp_2m_sde"): # Stage 1: composition sampler force_full_denoise = False # return with leftover noise = "enable" disable_noise = False # add noise = "enable" end_at_step = max(int(steps * (1-variation_strength)), 1) start_at_step = 0 work_latent = latent_image.copy() batch_size = work_latent["samples"].shape[0] work_latent["samples"] = work_latent["samples"][0].unsqueeze(0) stage1 = common_ksampler(model, noise_seed, steps, cfg, sampler, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)[0] if batch_size > 1: stage1["samples"] = stage1["samples"].clone().repeat(batch_size, 1, 1, 1) # Stage 2: variation sampler force_full_denoise = True disable_noise = True cfg = max(cfg * cfg_scale, 1.0) start_at_step = end_at_step end_at_step = steps return common_ksampler(model, variation_seed, steps, cfg, variation_sampler, scheduler, positive, negative, stage1, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) SAMPLING_CLASS_MAPPINGS = { "KSamplerVariationsStochastic+": KSamplerVariationsStochastic, "KSamplerVariationsWithNoise+": KSamplerVariationsWithNoise, } SAMPLING_NAME_MAPPINGS = { "KSamplerVariationsStochastic+": "🔧 KSampler Stochastic Variations", "KSamplerVariationsWithNoise+": "🔧 KSampler Variations with Noise Injection", }