--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-0.6B-Base tags: - generated_from_trainer datasets: - timarni/s1k_r1_clean model-index: - name: mloscratch/users/arni/models/qwen3-0.6B-Base-s1k_r1_reasoning_token results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml # Model Configuration base_model: Qwen/Qwen3-0.6B-Base type: AutoModelForCausalLM tokenizer_type: AutoTokenizer special_tokens: flash_attention: true flash_attn_rms_norm: true flash_attn_fuse_qkv: false sequence_len: 4096 chat_template: qwen3 # Dataset Configuration shuffle_merged_datasets: true dataset_processes: 8 sample_packing: true pad_to_sequence_len: true group_by_length: false train_on_inputs: false datasets: - path: timarni/s1k_r1_clean ds_type: json type: chat_template field_messages: conversations message_property_mappings: {role: from, content: value} # datasets: # - path: "json" # data_files: "/mloscratch/users/arni/reasoning_sft/data/s1k_r1/s1k_r1_think_token_cleaned.jsonl" # type: chat_template # ds_type: json # split: train # field_messages: conversations # message_field_role: from # message_field_content: value # Training Hyperparameters micro_batch_size: 1 gradient_accumulation_steps: 2 max_steps: 8500 num_epochs: 5 learning_rate: 1e-6 # 7e-7 optimizer: adamw_torch optim_args: fused: true lr_scheduler: cosine cosine_min_lr_ratio: 0 warmup_ratio: 0.05 weight_decay: 1.0e-4 adam_beta1: 0.9 adam_beta2: 0.95 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false max_grad_norm: 1.0 # Hardware/Performance Configuration load_in_4bit: false load_in_8bit: false deepspeed: /mloscratch/users/arni/meditron_protocol/training/sft/axolotl_config/deepspeed.json xformers_attention: null eager_attention: true tf32: false bf16: true # Logging/Checkpointing output_dir: /mloscratch/users/arni/models/qwen3-0.6B-Base-s1k_r1_reasoning_token logging_steps: 1 saves_per_epoch: 1 resume_from_checkpoint: null load_best_model_at_end: false early_stopping_patience: 0 eval_set_size: 0.0 eval_table_size: null # evals_per_epoch: 2 # eval_steps: 1000 # save_steps: 100 # WandB Configuration wandb_project: mnlp # meditron-reasoning wandb_entity: tim-arni # alexs-team wandb_name: qwen3-0.6B-Base-s1k_r1_reasoning_token # medicouenne-7b-checkpoint-5742-medMCQA ```

# mloscratch/users/arni/models/qwen3-0.6B-Base-s1k_r1_reasoning_token This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the /mloscratch/users/arni/reasoning_sft/data/s1k_r1/s1k_r1_think_token_cleaned.jsonl dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=fused=True - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 11 - training_steps: 8500 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1