timofeyk commited on
Commit
6cf9b41
·
verified ·
1 Parent(s): 4e0fa2c

Upload folder using huggingface_hub

Browse files
Files changed (8) hide show
  1. README.md +121 -3
  2. config.json +34 -0
  3. merges.txt +0 -0
  4. model.safetensors +3 -0
  5. special_tokens_map.json +15 -0
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +58 -0
  8. vocab.json +0 -0
README.md CHANGED
@@ -1,3 +1,121 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ tags:
6
+ - roberta
7
+ - ecommerce
8
+ - classification
9
+ datasets:
10
+ - "amazon-esci"
11
+ ---
12
+
13
+ E-commerce Search Query Router
14
+ ==============================
15
+
16
+ Model Description
17
+ -----------------
18
+
19
+ This model is a classifier fine-tuned from a `roberta-base` to determine the optimal search strategy for e-commerce queries. It classifies a given query into one of two labels:
20
+
21
+ - **`lexical_search`**: Indicates that the query is best handled by a traditional, keyword-based search engine like Lucene using BM25. These are typically specific queries like SKUs, exact product names, or part numbers.
22
+
23
+ - **`vector_search`**: Indicates that the query is better suited for a semantic, vector-based search. These are often ambiguous, conceptual, or "long-tail" queries where user intent is more important than specific keywords (e.g., "a gift for my dad who likes fishing").
24
+
25
+ The model is intended to be used as an intelligent "query router" in a hybrid search system, dynamically weighting the results from lexical and vector search engines to improve relevance.
26
+
27
+ Intended Use & Use Case
28
+ -----------------------
29
+
30
+ The primary use case for this model is to power a hybrid search relevance system. The intended workflow is as follows:
31
+
32
+ 1. A user enters a search query.
33
+ 2. The query is sent to this classifier model.
34
+ 3. The model returns probabilities for the `lexical_search` and `vector_search` classes.
35
+ 4. These probabilities are used as weights to blend the relevance scores from two separate search backends (e.g., Solr and Qdrant).
36
+ 5. The final, blended scores are used to rank the products shown to the user.
37
+
38
+ ### How to Use
39
+
40
+ Here's how to use the model with the `transformers` library `pipeline`:
41
+
42
+ ```python
43
+ from transformers import pipeline
44
+
45
+ router_pipeline = pipeline(
46
+ "text-classification",
47
+ model="timofeyk/roberta-query-router-ecommerce",
48
+ return_all_scores=True
49
+ )
50
+
51
+ # Example of a conceptual query
52
+ conceptual_query = "father day gift"
53
+ # Example of a specific query
54
+ specific_query = "16x16 pillow cover"
55
+
56
+ queries = [conceptual_query, specific_query]
57
+
58
+ for q in queries:
59
+ print(f"Predicting label for query: {q}")
60
+ results = router_pipeline(q)
61
+ print(results[0])
62
+ # Expected output might look like:
63
+ # [{'label': 'lexical_search', 'score': 0.46258628368377686}, {'label': 'vector_search', 'score': 0.5374137163162231}]
64
+
65
+ scores = {item['label']: item['score'] for item in results[0]}
66
+ w_vector = scores['vector_search']
67
+ w_lexical = scores['lexical_search']
68
+
69
+ print(f"Vector Search Weight: {w_vector:.2f}")
70
+ print(f"Lexical Search Weight: {w_lexical:.2f}")
71
+
72
+
73
+ ```
74
+
75
+ Training Data
76
+ -------------
77
+
78
+ This model was trained on a custom dataset of anonymized, real-world e-commerce queries. The dataset was generated using Amazon ESCI Dataset as a source. The labels were generated programmatically based on search performance, creating a signal for the model to learn from:
79
+
80
+ 1. A large set of user queries and their corresponding ground-truth "ideal" product results (based on user engagement) were collected.
81
+ 2. Each query was executed against both a Solr (lexical) and a Qdrant (vector) search engine.
82
+ 3. The **nDCG** relevance score was calculated for both result sets against the ground truth.
83
+ 4. The query was labeled `lexical_search` if Solr achieved a higher nDCG score, and `vector_search` otherwise.
84
+
85
+ Training Procedure
86
+ ------------------
87
+
88
+ The model was fine-tuned using the Hugging Face `Trainer`. To account for a potential class imbalance in the training data, a custom `Trainer` with a **weighted CrossEntropyLoss** was used, preventing the model from favoring the majority class.
89
+
90
+ ### Training params
91
+ ```
92
+ TrainingArguments(
93
+ learning_rate=1e-05,
94
+ lr_scheduler_type=SchedulerType.COSINE,
95
+ max_grad_norm=1.0,
96
+ num_train_epochs=3,
97
+ optim=OptimizerNames.ADAMW_TORCH_FUSED,
98
+ optim_args=None,
99
+ per_device_eval_batch_size=128,
100
+ per_device_train_batch_size=32,
101
+ prediction_loss_only=False,
102
+ warmup_ratio=0.05,
103
+ weight_decay=0.01,
104
+ )
105
+ ```
106
+
107
+ Citation
108
+ --------
109
+
110
+ If you use this model in your work, please consider citing it:
111
+
112
+ ```
113
+ @misc{timofeyk_roberta-query-router-ecommerce,
114
+ author = {Timofey Klyubin},
115
+ title = {E-commerce Search Query Router},
116
+ year = {2025},
117
+ publisher = {Hugging Face},
118
+ journal = {Hugging Face repository},
119
+ howpublished = {\url{[https://huggingface.co/](https://huggingface.co/)timofeyk/roberta-query-router-ecommerce}}
120
+ }
121
+ ```
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "lexical_search",
14
+ "1": "vector_search"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "lexical_search": 0,
20
+ "vector_search": 1
21
+ },
22
+ "layer_norm_eps": 1e-05,
23
+ "max_position_embeddings": 514,
24
+ "model_type": "roberta",
25
+ "num_attention_heads": 12,
26
+ "num_hidden_layers": 12,
27
+ "pad_token_id": 1,
28
+ "position_embedding_type": "absolute",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.55.2",
31
+ "type_vocab_size": 1,
32
+ "use_cache": true,
33
+ "vocab_size": 50265
34
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b62fd473c727dfa9b249b4868d55728e0c3594a3377a31ca2a26f4a7c47daed8
3
+ size 498612824
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff